10.1002/anie.202004747
Angewandte Chemie International Edition
RESEARCH ARTICLE
[20] Y. Markushyna, P. Lamagni, C. Teutloff, J. Catalano, N. Lock, G. Zhang,
M. Antonietti, A. Savateev, J. Mater. Chem. A 2019, 7, 24771-24775.
[21] V. W. h. Lau, D. Klose, H. Kasap, F. Podjaski, M. C. Pignié, E. Reisner,
G. Jeschke, B. V. Lotsch, Angew. Chem. Int. Ed. 2016, 56, 510-514.
[22] F. Strieth-Kalthoff, M. J. James, M. Teders, L. Pitzer, F. Glorius, Chem.
Soc. Rev. 2018, 47, 7190-7202.
oxides undergo [3+2]-cycloaddition. In total, 25 examples of
oxadiazoles-1,2,4 and isoxazoles were synthesized in 11-82%
yield.
In the context of this work, the developed photocatalytic [3+2]-
cycloaddition reaction is applicable for functionalization of
polymers, such as those with pendant multiple bonds. At the same
time, molecules, other than O2, can be used as energy acceptors
to broaden classes of organic compounds accessible via carbon
nitride photocatalysis. These are ongoing projects in our lab.
[23] A. G. Griesbeck, M. Cho, Org. Lett. 2007, 9, 611-613.
[24] M. Hayyan, M. A. Hashim, I. M. AlNashef, Chem. Rev. 2016, 116, 3029-
3085.
[25] A. A. Ghogare, A. Greer, Chem. Rev. 2016, 116, 9994-10034.
[26] A. Baran, G. Aydin, T. Savran, E. Sahin, M. Balci, Org. Lett. 2013, 15,
4350-4353.
[27] J. A. Celaje, D. Zhang, A. M. Guerrero, M. Selke, Org. Lett. 2011, 13,
4846-4849.
Acknowledgements
[28] S.-y. Takizawa, R. Aboshi, S. Murata, Photochem. Photobiol. Sci. 2011,
10, 895-903.
AS and MA are grateful the Deutsche Forschungsgemeinschaft
(DFG-An 156 13-1) and Max Planck Society for the financial
support. Dr. Bogdan Kurpil (developing conditions of oxadiazoles-
1,2,4 chromatographic purification), Prof. Burkhard König
(providing [Mes-Acr]+ClO4―), Olaf Niemeyer (the head of NMR
facility of the MPICI), Michael Born and Klaus Bienert (electric
workshop of the MPICI) are acknowledged for their contribution to
this project. This work was supported by resources provided by
the Pawsey Supercomputing Centre with funding from the
Australian Government and the Government of Western Australia.
AK acknowledges an Australian Research Council (ARC) Future
Fellowship (FT170100373). AT acknowledges Institute of Solid
State Chemistry of the UB RAS (theme No 0397-2019-0003).
[29] A. A. Abdel-Shafi, M. D. Ward, R. Schmidt, Dalton Trans. 2007, 2517-
2527.
[30] C. K. Remucal, K. McNeill, Environ. Sci. Technol. 2011, 45, 5230-5237.
[31] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay,
R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539-541.
[32] A. Dey, D. Kabra, J. Phys. Chem. A 2019, 123, 4858-4862.
[33] S. Raišys, S. Juršėnas, Y. C. Simon, C. Weder, K. Kazlauskas, Chem.
Sci. 2018, 9, 6796-6802.
[34] X. Jiang, X. Guo, J. Peng, D. Zhao, Y. Ma, ACS Appl. Mater. Interfaces
2016, 8, 11441-11449.
[35] X. Yu, X. Cao, X. Chen, N. Ayres, P. Zhang, Chem. Commun. 2015, 51,
588-591.
[36] G. Zhang, G. M. Palmer, M. W. Dewhirst, C. L. Fraser, Nat. Mater. 2009,
8, 747.
[37] L. Pastor-Pérez, C. Lloret-Fernández, H. Anane, M. L. El Idrissi
Moubtassim, M. Julve, S.-E. Stiriba, RSC Adv. 2013, 3, 25652-25656.
[38] H. Wang, S. Jiang, S. Chen, D. Li, X. Zhang, W. Shao, X. Sun, J. Xie, Z.
Zhao, Q. Zhang, Y. Tian, Y. Xie, Adv. Mater. 2016, 28, 6940-6945.
[39] J. Zhao, W. Wu, J. Sun, S. Guo, Chem. Soc. Rev. 2013, 42, 5323-5351.
[40] A. Savateev, D. Dontsova, B. Kurpil, M. Antonietti, J. Catal. 2017, 350,
203-211.
Keywords: carbon nitride • potassium poly(heptazine imide) •
solid state sensitizer • singlet oxygen • organic photocatalysis
[1]
N. Roy, N. Suzuki, C. Terashima, A. Fujishima, Bull. Chem. Soc. Jpn.
2019, 92, 178-192.
[2]
[3]
[4]
Z. Wang, C. Li, K. Domen, Chem. Soc. Rev. 2019, 48, 2109-2125.
K. Maeda, T. E. Mallouk, Bull. Chem. Soc. Jpn. 2019, 92, 38-54.
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K.
Domen, M. Antonietti, Nat. Mater. 2009, 8, 76 - 80
[41] Z. Chen, A. Savateev, S. Pronkin, V. Papaefthimiou, C. Wolff, M. G.
Willinger, E. Willinger, D. Neher, M. Antonietti, D. Dontsova, Adv. Mater.
2017, 29, 1700555.
[42] H. Schlomberg, J. Kröger, G. Savasci, M. W. Terban, S. Bette, I.
Moudrakovski, V. Duppel, F. Podjaski, R. Siegel, J. Senker, R. E.
Dinnebier, C. Ochsenfeld, B. V. Lotsch, Chem. Mater. 2019, 31, 7478-
7486.
[5]
[6]
[7]
K. S. Lakhi, D.-H. Park, K. Al-Bahily, W. Cha, B. Viswanathan, J.-H. Choy,
A. Vinu, Chem. Soc. Rev. 2017, 46, 72-101.
S. N. Talapaneni, G. Singh, I. Y. Kim, K. AlBahily, A. a. H. Al-Muhtaseb,
A. S. Karakoti, E. Tavakkoli, A. Vinu, Adv. Mater. 2020, 32, 1904635.
M. Volokh, G. Peng, J. Barrio, M. Shalom, Angew. Chem. Int. Ed. 2019,
58, 6138-6151.
[43] R. Godin, Y. Wang, M. A. Zwijnenburg, J. Tang, J. R. Durrant, J. Am.
Chem. Soc. 2017, 139, 5216-5224.
[44] C. Ye, J.-X. Li, Z.-J. Li, X.-B. Li, X.-B. Fan, L.-P. Zhang, B. Chen, C.-H.
Tung, L.-Z. Wu, ACS Catal. 2015, 5, 6973-6979.
[8]
[9]
J. Duan, S. Chen, M. Jaroniec, S. Z. Qiao, ACS Nano 2015, 9, 931-940.
Y. Zheng, Y. Jiao, Y. Zhu, L. H. Li, Y. Han, Y. Chen, A. Du, M. Jaroniec,
S. Z. Qiao, Nat. Commun. 2014, 5, 3783.
[45] H. Wang, S. Jiang, S. Chen, X. Zhang, W. Shao, X. Sun, Z. Zhao, Q.
Zhang, Y. Luo, Y. Xie, Chem. Sci. 2017, 8, 4087-4092.
[46] Q. Liu, J. Shen, X. Yu, X. Yang, W. Liu, J. Yang, H. Tang, H. Xu, H. Li,
Y. Li, J. Xu, Appl. Catal., B 2019, 248, 84-94.
[10] J. Xu, M. Shalom, F. Piersimoni, M. Antonietti, D. Neher, T. J. K. Brenner,
Adv. Opt. Mater. 2015, 3, 913-917.
[11] H. Arazoe, D. Miyajima, K. Akaike, F. Araoka, E. Sato, T. Hikima, M.
Kawamoto, T. Aida, Nat. Mater. 2016, 15, 1084.
[47] D. Dontsova, S. Pronkin, M. Wehle, Z. Chen, C. Fettkenhauer, G. Clavel,
M. Antonietti, Chem. Mater. 2015, 27, 5170-5179.
[12] K. Xiao, B. Tu, L. Chen, T. Heil, L. Wen, L. Jiang, M. Antonietti, Angew.
Chem. Int. Ed. 2019, 58, 12574-12579.
[48] A. B. Jorge, D. J. Martin, M. T. S. Dhanoa, A. S. Rahman, N. Makwana,
J. Tang, A. Sella, F. Corà, S. Firth, J. A. Darr, P. F. McMillan, J. Phys.
Chem. C 2013, 117, 7178-7185.
[13] K. Xiao, L. Chen, R. Chen, T. Heil, S. D. C. Lemus, F. Fan, L. Wen, L.
Jiang, M. Antonietti, Nat. Commun. 2019, 10, 74.
[49] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse,
L.-Z. Wu, C.-H. Tung, T. Zhang, Adv. Mater. 2017, 29, 1605148.
[50] G. Zhang, A. Savateev, Y. Zhao, L. Li, M. Antonietti, J. Mater. Chem. A
2017, 5, 12723-12728
[14] A. Savateev, I. Ghosh, B. König, M. Antonietti, Angew. Chem. Int. Ed.
2018, 57, 15936-15947.
[15] A. Savateev, M. Antonietti, ACS Catal. 2018, 8, 9790-9808.
[16] I. Ghosh, J. Khamarai, A. Savateev, N. Shlapakov, M. Antonietti, B.
König, Science 2019, 365, 360-366.
[51] A. Kahn, Mater. Horiz. 2016, 3, 7-10.
[52] J. Boström, A. Hogner, A. Llinàs, E. Wellner, A. T. Plowright, J. Med.
Chem. 2012, 55, 1817-1830.
[17] A. Savateev, B. Kurpil, A. Mishchenko, G. Zhang, M. Antonietti, Chem.
Sci. 2018, 9, 3584-3591
[53] Q. Li, L.-S. Cui, C. Zhong, X.-D. Yuan, S.-C. Dong, Z.-Q. Jiang, L.-S. Liao,
Dyes Pigm. 2014, 101, 142-149.
[18] B. Kurpil, K. Otte, A. Mishchenko, P. Lamagni, W. Lipiński, N. Lock, M.
Antonietti, A. Savateev, Nat. Commun. 2019, 10, 945.
[54] M. R. Mangione, A. Palumbo Piccionello, C. Marino, M. G. Ortore, P.
Picone, S. Vilasi, M. Di Carlo, S. Buscemi, D. Bulone, P. L. San Biagio,
RSC Adv. 2015, 5, 16540-16548.
[19] B. Kurpil, Y. Markushyna, A. Savateev, ACS Catal. 2019, 9, 1531-1538.
7
This article is protected by copyright. All rights reserved.