LETTER
Asymmetric Iodocyclization of g-Hydroxyalkenes
1281
Table 5 Iodocyclization of 9–14 Using (R)-Binol–Ti(IV) Complexa
(continued)
References
(1) (a) Rousseau, G.; Robin, S. Tetrahedron 1998, 54, 13681.
(b) Harding, K. E.; Tinger, T. H. In Comprehensive Organic
Synthesis, Vol. 4; Trost, B. M.; Fleming, I., Eds.; Pergamon:
Oxford, 1991, 463. (c) Mulzer, J. In Organic Synthesis
Highlights; VCH: Weinheim, 1991, 157.
(2) (a) Fuji, K.; Node, M.; Naniwa, Y.; Kawabata, T.
Tetrahedron Lett. 1990, 31, 3175. (b) Furth, M.; Brown, E.
G. J. Am. Chem. Soc. 1987, 109, 6844.
(3) (a) Back, T. G.; Dyck, B. P.; Nan, S. Tetrahedron 1999, 55,
3191. (b) Nishibayashi, Y.; Srivastava, S. K.; Takada, H.;
Fukuzawa, S.-I.; Uemura, S. J. Chem. Soc., Chem. Commun.
1995, 2321. (c) Wirth, T. Angew. Chem., Int. Ed. Engl. 1995,
34, 1726. (d) Fujita, K.-I.; Iwaoka, M.; Tomoda, S. Chem.
Lett. 1992, 1123.
1. Ti(i-PrO)4, MS 4Åb
2. substratec
1
t-BuOMe, r.t., 1.5 h NIS, 0 °C
I
O
R
O
I
or
R
15 R = CH2Ph
16 R = (CH2)3OTBDPS
17 R = Et
19 R = Et
20 R = Ph
18 R = n-Pr
OH
OH
R
R
(4) Kang, S. H.; Kim, M. J. Am. Chem. Soc. 2003, 125, 4684.
(5) (a) Hass, J.; Piguel, S.; Wirth, T. Org. Lett. 2002, 4, 297.
(b) Grossman, R. B.; Trupp, R. J. Can. J. Chem. 1998, 76,
1233.
13 R = Et
14 R = Ph
9 R = CH2Ph
10 R = (CH2)3OTBDPS
11 R = Et
12 R = n-Pr
(6) (a) Grundon, M. F.; Stewart, D.; Watts, W. E. J. Chem. Soc.,
Chem. Commun. 1973, 573. (b) Carlson, R. M.; Funk, A. H.
Tetrahedron Lett. 1971, 27, 3661.
(7) Kang, S. H.; Lee, S. B.; Park, C. M. J. Am. Chem. Soc. 2003,
51, 15748.
Entry
7
Substrate Reaction
Time (h)
Product
Yield (%) Ee (%)
34g
14
10
20
82
(8) (a) Mikami, K.; Terada, M.; Matsumoto, Y.; Tanaka, M.;
Nakamura, Y. Micropor. Mesopor. Mater. 1998, 21, 461.
(b) Terada, M.; Matsumoto, Y.; Nakamura, Y.; Mikami, K.
J. Mol. Catal. A: Chem. 1998, 132, 165. (c) Inoue, T.;
Kitagawa, O.; Saito, A.; Taguchi, T. J. Org. Chem. 1997, 62,
7384. (d) Keck, G. E.; Krishnamurthy, D. J. Am. Chem. Soc.
1995, 117, 2363. (e) Keck, G. E.; Tarbet, K. H.; Geraci, L. S.
J. Am. Chem. Soc. 1993, 115, 8467.
(9) (a) Lingenfelter, D. S.; Helgeson, R. C.; Cram, D. J. J. Org.
Chem. 1981, 46, 393. (b) Hu, Q.; Vitharana, D.; Pu, L.
Tetrahedron: Asymmetry 1995, 6, 2123. (c) Qian, C.;
Huang, T.; Zhu, C.; Sun, J. J. Chem. Soc., Perkin Trans. 1
1998, 2097. (d) Cram, D. J.; Helgeson, R. C.; Peacook, S.
C.; Kaplan, L. J.; Domeier, L. A.; Moreau, P.; Koga, K.;
Mayer, J. M.; Chao, Y.; Siegel, M. G.; Hoffmann, D. H.;
Sogah, G. D. Y. J. Org. Chem. 1978, 43, 1930.
(10) General Procedure for the Asymmetric Iodocyclization.
To a mixture of (R)-Binol (17 mg, 0.06 mmol) and 4Å
molecular sieve (57 mg) in t-butyl methyl ether (3.5 mL) was
added Ti(Oi-Pr)4 (17 mg, 0.06 mmol) in t-butyl methyl ether
(0.7 mL) at r.t., and the resulting mixture was stirred at that
temperature for 1.5 h. After cooling the generated (R)-
Binol–Ti(IV) complex to 0 °C, the substrate 2 (57 mg, 0.3
mmol) in t-butyl methyl ether (1.5 mL) and N-iodo-
succinimide (81 mg, 0.36 mmol) were added in sequence.
The iodocyclization was allowed to proceed at 0 °C for 3 h,
and then quenched with 10% aq Na2S2O3 (3 mL). The
reaction mixture was extracted with Et2O (3 × 5 mL), and
subsequently the organic layer was filtered through celite.
Evaporation of the volatile materials in vacuo followed by
silica gel column chromatography (Et2O–hexane = 1:15)
yielded tetrahydrofuran 3 (89 mg, 93%).
a 0.2 Equiv of (R)-Binol, 0.2 equiv of Ti(Oi-Pr)4 and 1.2 equiv of NIS
were used.
b 10 mg per 3 mg of Ti(Oi-Pr)4 was added.
c [Substrate] = 52.8 mM.
d Determined by HPLC analysis using DAICEL OD-H.
e Determined by HPLC analysis of the corresponding benzoate using
DAICEL OD, which was prepared from 16 via desilylation followed
by benzoylation.
f Determined by GC analysis using CHIRALDEX B-DM.
g Determined by HPLC analysis using DAICEL OD.
Finally, the iodoetherification of terminal olefinic alcohol
( )-21, as a kinetic resolution experiment, was imple-
mented to engender trans-2,5-disubstituted tetrahydro-
furan trans-22 in 52% ee and 42% yield along with 41%
of recovered 21 having 54% ee (Scheme 1).
n
Ti(O-i-Pr)4, MS 4Å
t-BuOMe, r.t., 1.5 h
NIS, 0 °C, 3 h
1
_
(+)-21
Ph
OH
Ph
O
I
+
22
21
Scheme 1
Acknowledgment
This work was supported by CMDS and the Brain Korea 21 Project.
Synlett 2004, No. 7, 1279–1281 © Thieme Stuttgart · New York