3
from the yield of the products 2b and 2c. On the other hand,
while considering the para substitutions, bromo and benzyloxy
substitutuions excelled to ensure excellent yield of the
benzooxazepines 2d and 2e. A thiophene ring on the ketone side
exhibited a similar effect as evident from the yield of the product
Upadhyaya, P.; Eur. J. Med. Chem., 1986, 21, 21.
7
8
.
.
Liao, Y.; Venhuis, B. J.; Rodenhuis, N.; Timmerman, W.; Wikstrom,
H.; J. Med. Chem., 1999, 42, 2235-2244.
(a) Leimgruber, W.; Stefanovic, V.; Schenker, F.; Karr, A.; Berger, J.;
J. Am. Chem. Soc. 1965, 87, 5791-5793 (b) Leimgruber, W.; Batcho,
A. D.; Schenker, F.; Karr, A.; Berger, J.; J. Am. Chem. Soc. 1965, 87,
2
f. On the other hand, significant retardation in the efficiency of
this protocol was observed when biphenyl system is present in
the ketone side as evident from the decrease of yield of 2g.
Furthermore, when aliphatic substitution was on the ketone side
as reflected from the lower of yields of the products 2h and 2i.
Substitution on the aryl ring on the olefin side of the starting
material also was carefully examined. Methyl and bromo
substitutions were examined and it was perceived that both were
equally forwarded this transformation as reflected from the
similar yields of the products 2j and 2k. Similarly,
benzodiazepines also were synthesized in this approach.
Benzodiazepine (2l) was prepared in 70% yield which is slightly
less than the yield of its oxygen analogue 2a. Unlike 2b and 2c,
the methyl and chloro substitutions on the phenyl ring of the
ketone part of the starting material, exhibit almost similar effect
as testified from the yields of 2m and 2n. In the case of aliphatic
substitution on the ketone part, cyclopropyl group was perceived
to be more effective than n-butyl and methyl groups since the
yield of 2o is greater than 2p and 2q.
5
791-5793.
9.
Khan, M. I.; Bioorg. Med. Chem. Lett., 2009, 19, 5241-5245.
1
0. (a) Gangaprasad, D.; Paul Raj, J.; Kiranmye, T.; Sadik, S. S.;
Elangovan, J.; RSC Adv. 2015, 5, 63473-63477; (b) Gangaprasad, D.;
Paul Raj, J.; Kiranmye, T.; Sasikala, R.; Karthikeyan, K.; Kutti Rani
S.; Elangovan, J.; Tet. Lett. 2016, 57, 3105-3108; (c) Gangaprasad, D.;
Paul Raj, J.; Kiranmye, T.; Karthikeyan, K.; Elangovan, J.; Eur. J.
Org. Chem. 2016, 34, 5642-5646; (e) Gangaprasad, D.; Paul Raj, J.;
Karthikeyan, K.; Rengasamy, R.; Elangovan, J.; Adv. Synth. Catal.
2018, 360, 4485-4490.
11. Donald, J. R.; Martin, S. F.; Org. Lett., 2011, 13, 852-855.
2. Hooyberghs, G.; Coster, H. D.; Vachhani, D. D.; Ermolat’ev, D. S.;
Van der Eycken, E. V.; Tetrahedron., 2013, 69, 4331-4337.
3. Majumdar, K. C.; Ganai, S.; Tetrahedron Lett., 2013, 54, 6192-6195.
5. Wang, T.; Guo, Z.; Curr. Med. Chem. 2006, 13, 525-537.
1
1
1
A new protocol to access 1,2,3-triazole fused benzooxazepine
and benzodiazepine analogues was developed by intramolecular
azide-olefin oxidative cycloaddition. This method differs from its
predecessors owing to the following attributes. 1. This method
involves azide-olefin cycloaddition to construct the 1,2,3-triazole
moiety while the other methods use azide-alkyne cycloaddition
approach. It is worth mentioning that the alkenes are
commercially and synthetically more viable than alkynes. 2. This
method becomes versatile because this can be used to access both
triazole fused benzooxazepine and benzodiazepine moieties
while other methods can be used to achieve only triazole fused
benzodiazepines. 3. This method also holds the advantage of
copper-free condition owing to the cytotoxicity of copper
1
Highlights
A collection of 1,2,3-triazole fused
benzooxazepine and benzodiazepine
analogues was prepared
Using one pot azide substitution and
intramolecular azide-olefin oxidative
1
5
catalysts. 4. The azide substitution and oxidative azide-olefin
cycloaddition steps take place consecutively in one-pot. Hence
this method can prove to be a promising alternative to the
existing methods to access this family of 1,2,3-triazole fused
benzooxazepines and benzodiazepines
References and notes
cycloaddition sequence under metal-free
conditions.
1
(a) MiKi, T.; Kori, M.; Mabuchi, H.; Tozawa, R.; Nishimotos, T.;
Sugiyama, Y.; Teshima, K.; Yukimasa, H.; J. Med. Chem., 2002, 45,
Conditions are grabs the advantage of
copper-free condition owing to the
cytotoxicity of copper catalysts.
4
7
571-4580; (b) Bihel, F.; Kraus, J. L.; Org. Biomol. Chem., 2003, 1,
93-799; (c) Merluzzi, V. J.; Hargrave, K. D.; Labadia, M.; Grozinger,
K.; Skoog, M.; Wu, J. C.; Shih, C. K.; Eckner, K.; Hattox, S.; Adams,
J.; Rosenthal, A. S.; Faanes, R.; Eckner, R. J.; Koup, R. A.; Sullivan, J.
L.; Science, 1990, 250, 1411-1413; (d) Smits, R. A.; Lim, H. D.;
Stegink, B.; Bakker, R. A.; de Esch, I. J. P.; Leurs, R.; J. Med. Chem.,
2
006, 49, 4512-4516; (e) Liao, Y.; Venhuis, B. J.; Rodenhuis, N.;
Timmerman, W.; Wikstrom, H.; Meier, E.; Bartoszyk, G. D.;
Bottcher, H.; Seyfried, C. A.; Sundell, S.; J. Med. Chem., 1999, 42,
2
235-2244.
2
3
Liao, Y.; Venhuis, B. J.; Rodenhuis, N.; Timmerman, W.; Wikström,
H.; J. Med. Chem., 1999, 42, 2235-2244.
Binaschi, M.; Boldetti, A.; Gianni, M.; Maggi, C. A.; Gensini, M.;
Bigioni, M.; Parlani, M.; Giolitti, A.; Fratelli, M.; Valli, C.; Terao,
M.; Garattini, E.; ACS Med. Chem. Lett., 2010, 1, 411-415.
Chakrabarti, J. K.; Hicks, T. A.; Eur. J. Med. Chem., 1987, 22, 161-
.
4
5
.
.
1
63.
(a) Thurston, D. E.; Jones, G. B.; Davis, M. E.; J. Chem. Soc., Chem.
Commun. 1990, 0, 874-876. (b) Basolo, L.; Beccalli, E. M.; Borsini,
E.; Broggini, G.; Khansaa, M.; Rigamonti, M.; Eur. J. Org. Chem.
2
010, 1694. (c) Markandeya, N.; Shankaraiah, N.; Reddy, C. S.;
Santos, L. S.; Kamal, A.; Tetrahedron Asymmetry 2010, 21, 2625-
2
2
8
630. (d) Antonow, D.; Thurston, D. E.; Chem. Rev. 2011, 111, 2815-
864. (e) Mitra, S.; Darira, H.; Chattopadhyay, P.; Synthesis 2013, 45,
5-92.
6
.
Nagarajan, K.; David, J.; Kulkarni, Y. S.; Hendi, S. B.; Shenoy, S. J.;