ORGANIC
LETTERS
XXXX
Vol. XX, No. XX
000–000
Palladium-Catalyzed C‑2 Selective
Arylation of Quinolines
Xiaoyu Ren, Ping Wen, Xiaokang Shi, Yuling Wang, Jian Li, Sizhuo Yang, Hao Yan,
and Guosheng Huang*
State Key Laboratory of Applied Organic Chemistry, Lanzhou University,
Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu
Province, Lanzhou 730000, P. R. China
Received August 14, 2013
ABSTRACT
An efficient method for the Pd-catalyzed regioselective C-2 arylation of quinolines is presented. Reactions of various substituted quinolines and
unactivated arenes have been conducted under mild conditions. The result shows good product yields of 2-arylquinolines, which are highly useful
building blocks for the synthesis of bioactive alkaloid natural products and drug molecules.
Biaryl structural motifs are indispensable structures
which are frequently found in biologically active mole-
cules, natural products, and organic materials and have
been attracting chemists’ attention for decades.1,2 There-
fore, transition-metal-catalyzed arylÀaryl bond formation
through the coupling of two CÀH bonds is of high
importance to organic chemists.3 Direct arylation affords
biaryls in fewer steps compared to traditional methods.4
Consequently, much attention has been given to develop-
ing synthetic pathways for creating an arylÀaryl bond via
CÀH activation.
Quinolines are one of the key components of many
synthetic building blocks, natural products, and drug
candidates.5 In the past decades, a variety of methods have
been developed to functionalize quinoline compounds.
Previous researchers6À17 have reported several efficient
protocols to synthesize C-2 aryl quinolines by transition-
metal-catalyzed coupling reactions of its derivatives (e.g.,
N-oxides and N-iminopyridinium ylides and heteroaryl
(5) Kwak, J.; Kim, M.; Chang, S. J. Am. Chem. Soc. 2011, 133, 3780.
(6) (a) Lee, D. H.; Jung, J. Y.; Jin, M. J. Green Chem. 2010, 12, 2024.
(b) Jung, J. Y.; Althammer, A.; Hossain, S.; Jin, M. J. Bull. Korean
Chem. Soc. 2010, 31, 3010. (c) Lee, D. H.; Althammer, A.; Ahn, W. S.;
Jin, M. J. Chem. Commun. 2010, 46, 478.
(7) Tagata, T.; Nishida, M. J. Org. Chem. 2003, 68, 9412.
(8) Ackermann, L.; Potukuchi, H. K.; Althammer, A.; Born, R.;
Mayer, P. Org. Lett. 2010, 12, 5.
(9) Chen, G. J.; Han, F. S. Eur. J. Org. Chem. 2012, 125, 3575.
(10) Quasdorf, K. W.; Finch, A. A.; Liu, P.; Silberstein, A. L.;
Komaromi, A.; Blackburn, T.; Ramgren, S. D.; Houk, K. N.; Snieckus,
V.; Garg, N. K. J. Am. Chem. Soc. 2011, 133, 6352.
(11) Finch, A. A.; Blackburn, T.; Snieckus, V. J. Am. Chem. Soc.
2009, 131, 17750.
(12) Tobisu, M.; Hyodo, I.; Chatani, N. J. Am. Chem. Soc. 2009, 131,
12070.
(13) Strotman, N. A.; Chobanian, H. R.; Guo, Y.; He, J. F.; Wilson,
J. E. Org. Lett. 2010, 12, 3578.
(14) Iglesias, M.; Prieto, A.; M. Nicasio, C. Org. Lett. 2012, 14, 4318.
(15) Kuzmina, O. M.; Steib, A. K.; Flubacher, D.; Knochel, P. Org.
Lett. 2012, 14, 4818.
(16) Berman, A. M.; Bergman, R. G.; Ellman, J. A. J. Org. Chem.
2010, 75, 7863.
(1) (a) Ackermann, L.; Vicente, R.; Kapdi, A. R. Angew. Chem., Int.
´
Ed. 2009, 48, 9792. (b) Brasche, G.; Garcıa-Fortanet, J.; Buchwald, S. L.
Org. Lett. 2008, 10, 2207. (c) Kinzel, T.; Zhang, Y.; Buchwald, S. L.
J. Am. Chem. Soc. 2010, 132, 14037. (d) Gorelsky, S. I.; Lapointe, D.;
Fagnou, K. J. Org. Chem. 2012, 77, 658.
(2) For reviews on biaryl syntheses, see: (a) Bringmann, G.; Price
Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M.
Angew. Chem., Int.Ed. 2005, 44, 5384. (b) Corbet, J. P.; Mignani, G. Chem.
Rev. 2006, 106, 2651. (c) Beller, M.; Bolm, C. Transition Metals for Organic
Synthesis; Wiley-VCH: Weinheim, 2004; (d) de Meijere, A.; Diederich, F.
Metal-Catalyzed Cross-Coupling Reactions; Wiley-VCH: Weinheim, 2004;
(e) Anastasia, L.; Negishi, E. Handbook of Organopalladium Chemistry for
Organic Synthesis; Wiley: New York, 2002. (f) Bringmann, G.; G€unther, C.;
Ochse, M.; Schupp, O.; Tasler, S. Prog. Chem. Org. Nat. Prod. 2001, 82, 1. (g)
Sun, C. J.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293. (h) Liu, C.;
Zhang, H.; Shi, W.; Lei, A. W. Chem. Rev. 2011, 111, 1780. (i) Arockiam,
P. B.; Bruneau, C.; Dixneuf, P. H. Chem. Rev. 2012, 112, 5879. (j) Yeung,
C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215.
(3) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
(4) McGlacken, G. P.; Bateman, L. M. Chem. Soc. Rev. 2009, 38,
2447.
(17) Hyodo, I.; Tobisu, M.; Chatani, N. Chem.;Asian J. 2012, 7,
1357.
r
10.1021/ol402262c
XXXX American Chemical Society