Crystal Growth & Design
Article
Springer−Verlag: Berlin and Heidelberg, 2009; Vol. 132, pp 25−50.
M. D.; Eckert-Maksic,
8473. (e) Braga, D.; Maini, L.; Grepioni, F. Chem. Commun. 1999,
́
M.; Frisc
̌
i
̌
c,
́
T. Chem.Eur. J. 2012, 18, 8464−
(
e) Senthil Kumar, V. S.; Sheela, K. C.; Nair, V.; Rath, N. P. Cryst.
Growth Des. 2004, 4 (6), 1245−1247. (f) Rath, N. P.; Kumar, V. S. S.;
937−938. (f) Buca
Jones, W. CrystEngComm 2013, 15, 6289−6291. (g) Frisc
A. V.; Jones, W.; Motherwel, W. D. S. Angew. Chem., Int. Ed. 2006, 45,
7546−7550. (h) Uzarevic, K.; Rubcic, M.; Radic, M.; Puskaric, A.;
Cindric, M. CrystEngComm 2011, 13, 4314−4323. (i) Braga, D.;
Giaffreda, S. L.; Grepioni, F.; Polito, M. CrystEngComm 2004, 6 (75),
458−462. (j) Cindric, M.; Uzelac, M.; Cincic, D.; Halasz, I.; Pavlovic,
G.; Hrenar, T.; Curic, M.; Kovacevic, D. CrystEngComm 2012, 14,
3039−3045. (k) Uzarevic, K.; Rubcic, M.; Đilovic, I.; Kokan, Z.;
D.; Cindric, M. Cryst. Growth Des. 2009, 9 (12),
̌
r, D.-K.; Filip, S.; Arhangelskis, M.; Lloyd, G. O.;
Janka, M.; Anderson, G. K. Inorg. Chim. Acta 2007, 360, 2997−3001.
̌ ̌ ́
ic, T.; Trask,
(
g) Nangia, A. Acc. Chem. Res. 2008, 41, 595−604. (h) Davey, D R. J.;
Blagden, N.; Potts, G. D.; Docherty, R. J. Am. Chem. Soc. 1997, 119,
̌
́
̌
́
́
̌
́
1
767−1772. (i) Yu, L. Acc. Chem. Res. 2010, 43 (9), 1257−1266.
́
(
j) Rubcic, M.; Milic, D.; Pavlovic, G.; Cindric, M. Cryst. Growth Des.
̌
́
́
́
́
2
(
(
011, 11 (12), 5227−5240.
́
̌
́
́
́
11) Schmidt, G. M. J. J. Chem. Soc. 1964, 2014−2021.
́
̌
́
12) (a) Zhimin, H.; Iqbal, A. Chem. Soc. Rev. 1997, 26, 203−213.
̌
́
̌
́
́
̌
(
(
b) Hunger, K. Rev. Prog. Color. Relat. Top. 1999, 29, 71−84.
Matkovic-
́
Calogovic,
́
́
c) Deschamps, J. R.; Parrish, D. A.; Butcher, R. J. NRL Rev. 2008,
5327−5333.
7
1−77.
13) Bauer, J.; Spanton, S.; Henry, R.; Quick, J.; Dziki, W.; Porter,
W.; Morris, J. Pharm. Res. 2001, 18 (6), 859−866.
14) Among other approaches, we have also inspected the influence
(29) (a) Castellani, F.; van Rossum, B.; Diehl, A.; Schubert, M.;
Rehbein, K.; Oschkinat, H. Nature 2002, 420, 98−102. (b) Zumbu-
lyadis, N.; Antalek, B.; Windig, W.; Scaringe, R. P.; Lanzafame, A. M.;
Blanton, T.; Helber, M. J. Am. Chem. Soc. 1999, 121, 11554−11557.
(c) Berendt, R. T.; Sperger, D. M.; Munson, E. J.; Isbester, P. K.
Trends Anal. Chem. 2006, 25 (10), 977−984. (d) Conte, P.; Spaccini,
R.; Piccolo, A. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 215−223.
(e) Etter, M. C.; Hoye, R. C.; Vojta, G. M. Cryst. Rev. 1988, 1 (4),
281−333.
(
(
of an additive on the crystallization outcome. Since our previous
studies demonstrated that the use of 4,4′-bipy (as an additive) can be
beneficial in terms of selective polymorph crystallization (ref 28k), we
employed the same compound here. It is worth noting that in this
particular case 4,4′-bipy had a 2-fold role. On one hand, it directed
crystallization of pure form I, but at the same time it facilitated the
formation of fine-quality crystals, crucial for single-crystal X-ray
diffraction experiments, which we had severe difficulties in obtaining
otherwise.
(30) (a) Claramunt, R. M.; Lop
Elguero, J. Prog. Nucl. Magn. Reson. Spectrosc. 2006, 49, 169−206.
(b) Makal, A.; Schilf, W.; Kamienski, B.; Szady-Chelmieniecka, A.;
Grech, E.; Wozniak, K. Dalton Trans. 2011, 40, 421−430. (c) Rubcic,
M.; Uzarevic, K.; Halasz, I.; Bregovic, N.; Malis, M.; Đilovic, I.; Kokan,
Z.; Stein, R. S.; Dinnebier, R. E.; Tomisic,
́
ez, C.; Santa María, M. D.; Sanz, D.;
́
́
̌
́
(
15) Xcalibur CCD system: CrysAlis Software system, versions
.171.33.66, 1.171.34.44, and 1.171.36.28; Oxford Diffraction Ltd.:
Abingdon, Oxfordshire, U.K., 2008.
̌
́
́
̌
́
1
̌
́
V. Chem.Eur. J. 2012, 18,
5620−5631. (d) Rozwadowski, Z.; Dziembowska, T. Magn. Reson.
Chem. 1999, 37, 274−278. (e) Dziembowska, T.; Szafran, M.;
Katrusiak, A.; Rozwadowski, Z. J. Mol. Struct. 2009, 929, 32−42.
(f) Domínguez, O.; Rodríguez-Molina, B.; Rodríguez, M.; Ariza, A.;
(
(
(
(
16) Sheldrick, G. M. Acta Crystallogr., Sect. A 2008, 64, 112−122.
17) Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837−838.
18) Spek, L. J. Appl. Crystallogr. 2003, 36, 7−13.
19) (a) Nardelli, M. Comput. Chem. 1983, 7, 95−98. (b) Nardelli,
Farfan
(g) Jaworska, M.; Hrynczyszyn, P. B.; Wełniak, M.; Wojtczak, A.;
Nowicka, K.; Krasinski, G.; Kassassir, H.; Ciesielski, W.; Potrzebowski,
M. J. J. Phys. Chem. A 2010, 114, 12522−12530. (h) Schilf, W.;
Kamienski, B.; Uzarevic, K. J. Mol. Struct. 2013, 1031 (16), 211−215.
(31) (a) Pretsch, E.; Buhlmann, P.; Affolter, C. In Structure
Determination of Organic Compounds: Tables of Spectral Data;
Pretsch, E., Bu
́
c, N.; Santillan, R. New J. Chem. 2011, 35, 156−164.
M. J. Appl. Crystallogr. 1995, 28, 659−673.
(
(
(
22) Macrae, C. F.; Bruno, I. J.; Chisholm, J. A.; Edgington, P. R.;
́
́
̌
́
McCabe, P.; Pidcock, E.; Rodriguez-Monge, L.; Taylor, R.; van de
̈
Streek, J.; Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466−470.
(
23) (a) Dutta, R. L.; Hossain, M. M. Indian J. Chem. 1983, 22A,
̈
hlmann, P., Affolter, C., Eds.; Springer−Verlag: Berlin
2
1
(
01−203. (b) Dan, J.; Seth, S.; Chakraborty, S. Acta Crystallogr. Sect. C
and Heidelberg, 2000. (b) Kolodziejski, W.; Wawer, I.; Wozniak, K.;
Klinowski, J. J. Phys. Chem. 1993, 97, 12147−12152. (c) Etter, M. C.;
Urbakzyk-Lipkowska, Z.; Zia-Ebrahimi, M.; Panunto, T. W. J. Am.
987, 43, 1114−1116.
24) (a) Bustos, C.; Burckhardt, O.; Schrebler, R.; Carrillo, D.; Arif,
A. M.; Cowley, A. H.; Nunn, C. M. Inorg. Chem. 1990, 29, 3996−4001.
b) Kogan, V. A.; Lukov, V. V.; Novotortsev, V. M.; Eremenko, I. L.;
Aleksandrov, G. G. Russ. Chem. Bull., Int. Ed. 2005, 54 (3), 600−605.
c) Affan, M. A.; Liew, Y. Z.; Ahmad, F. B.; Shamsuddin, M. B.; Yamin,
Chem. Soc. 1990, 112, 8415−8426. (d) Macholl, S.; Bo
̈
rner, F.;
(
Buntkowsky, G. Chem.Eur. J. 2004, 10, 4808−4816.
(32) Escobar Godoy, R.; Barragan de la Rosa, F. J.; Gom
J. Mol. Struct. 1986, 143, 505−508.
́
́
ez Ariza, J. L.
(
B. M. Indian J. Chem. 2007, 46A, 1063−1068. (d) Li, Z.; Zhu, W.; Yu,
(33) (a) Brown, A. C.; Pickering, E. C.; Wilson, F. J. J. Chem. Soc.
1927, 107−112. (b) Munro, A. M.; Wilson, F. J. J. Chem. Soc. 1928,
1257−1261.
J.; Ma, X.; Lu, Z.; Xiao, S. Synth. Commun. 2006, 36 (18), 2613−2619.
(
25) Bikas, R.; Anarjan, P. M.; Weng Ng, S.; Tiekink, E. R. T. Acta
Crystallogr., Sect. E 2012, 68, o413−o414.
(34) Stability order among polymorphs can be deduced in several
ways. One of the simple approaches, the density rule, compares the
densities of the polymorphs, considering that the polymorph of the
highest density is the most stable one. [For a detailed discussion on
the density rule, see (a) Burger, A.; Ramberger, R. Mikrochim. Acta
1979, II, 259−272. (b) Burger, A.; Ramberger, R. Mikrochim. Acta
1979, II, 273−316 and ref 8e.]. Although this rule applies well in 90%
of cases, discrepancies may arise when interactions such as hydrogen
bonding govern the packing. These can in some cases lead to
molecular arrangements that leave voids in the structure, subsequently
lowering the density of the material. When such ambiguities arise, it is
advisable to compare the conclusion based on the density rule against
the results deduced via another approach, such as solvent-mediated
transition experiment (SMT; see for example ref 9c). Typically, the
procedure involves suspending the mixture of polymorphs at a chosen
temperature in a solvent that is saturated with the investigated
compound. The resulting slurry is subsequently stirred and the more
stable polymorph, at a given temperature, should be the only
remaining phase after a certain period of time. When both approaches
(
26) The structures of the two forms reported (here named II and
IV) were previously elucidated. We undertook new refinements as in
the case of II (ref 25): data were collected at low temperature. Since
we conducted this study mostly referring to room temperature (or
higher temperatures), we considered it important to have structural
models of all phases at room temperature. In the case of IV (ref 23b),
the previous structural model was incomplete, since it was missing the
N−H/O−H hydrogen atoms. Since this study, among other, addresses
hydrogen bonding in the solid state, we considered it essential to have
complete structural models.
(
27) Novak, P.; Jednaca
M.; Galic, N.; Hrenar, T. Croat. Chem. Acta 2012, 85 (4), 451−456.
28) (a) James, S. L.; Adams, C. J.; Bolm, C.; Braga, D.; Collier, P.;
Frisc c, T.; Grepioni, F.; Harris, K. D.; Hyett, G.; Jones, W.; Krebs, A.;
̌ ́ ̌ ́
k, T.; Parlov Vukovic, J.; Zangger, K.; Rubcic,
́
(
̌ ̌ ́
i
Mack, J.; Maini, L.; Orpen, A. G.; Parkin, I. P.; Shearouse, W. C.;
Steed, J. W.; Waddell, D. C. Chem. Soc. Rev. 2012, 41 (1), 413−447.
(
̌ ̌ ́
̈
b) Friscic, T. Chem. Soc. Rev. 2012, 41, 3493−3510. (c) Aakeroy, C.
̌
B.; Chopade, P. D. Org. Lett. 2011, 13 (1), 1−3. (d) Strukil, V.; Igrc,
2
911
dx.doi.org/10.1021/cg500203k | Cryst. Growth Des. 2014, 14, 2900−2912