4
0
X. Guo et al. / Carbohydrate Research 351 (2012) 35–41
3
that of sulfuric acid. The activity of SBA-15-SO H may be ascribed
1
9
9
9
9
00
85
80
75
70
65
to the materials with suitable acidic sites as the active centers and
the unique surface textural properties. The separation of HMF was
successfully achieved in a THF/BmimCl biphasic system. These
made this simple SBA-15-SO H-BmimCl system a promising choice
3
for fructose dehydration to HMF.
8
6
Fructose conversion
HMF yield
4
Acknowledgments
2
The authors are grateful for the financial support of the National
High Technology Research and Development Program of China (No.
90
2
009AA05Z410), the National Natural Science Foundation of China
1
2
3
4
(
No. 20803038), the Natural Science Foundation of Shandong Prov-
Cycle
ince, China (No. O92003110C) and the Knowledge Innovation Pro-
gram of the Chinese Academy of Sciences (No. KSCX2-YW-G-075-
1
Figure 6. Stability of SBA-15-SO
2
3
H upon catalyst recycling. (Reaction conditions:
.4 g BmimCl, 0.6 g fructose, 0.03 g catalyst, 120 °C, 1.0 h.)
3).
3
without using any additional SBA-15-SO H catalyst. The HMF
product was extracted after each run, and fructose was added di-
rectly for the next run. The fructose conversion stabilized at 97–
References
1.
Ilgen, F.; Ott, D.; Kralisch, D.; Reil, C.; Palmberger, A.; König, B. Green Chem.
2009, 11, 1948–1954.
1
00% (Fig. 6), a slight decrease in the selectivity of HMF was ob-
2
3
.
.
Tong, X.; Ma, Y.; Li, Y. Appl. Catal. A 2010, 385, 1–13.
Hu, S. Q.; Zhang, Z. F.; Song, J. L.; Zhou, Y. X.; Han, B. X. Green Chem. 2009, 11,
served. These results clearly showed that the heterogeneous cata-
lysts were active in the dehydration of fructose and can be reused
without significant decrease in the catalytic activity and with al-
most similar selectivity after three recycles.
1746–1749.
4. Yong, G.; Zhang, Y. G.; Ying, J. Y. Angew. Chem., Int. Ed. 2008, 47, 9345–9348.
5
.
.
Tong, X.; Li, M.; Yan, N.; Ma, Y. J.; Dysonb, P.; Li, Y. Catal. Today 2011, 175, 524–
27.
5
6
3
.6. Separation of HMF by THF (tetrahydrofuran) extraction
7
8
9
.
.
.
Román-Leshkov, Y.; Chheda, J. N.; Dumesic, J. A. Science 2006, 312, 1933–1937.
Chheda, J. N.; Román-Leshkov, Y.; Dumesic, J. A. Green Chem. 2007, 9, 342–350.
Mercadier, D.; Rigal, L.; Gaset, A. J. Chem. Tech. Biotechnol. 1981, 31, 497–502.
Separation of HMF from the reaction system is another chal-
lenge. Extraction is widely applied in the separation and purifica-
10. Halliday, G. A.; Young, R. J.; Grushin, V. V. Org. Lett. 2003, 5, 2003–2005.
2
5,37,47,48
tion of HMF
as the solubility of HMF in several organic
11. Moreau, C.; Durand, R.; Razigade, S. Appl. Catal. A 1996, 145, 211–224.
12. Rivalier, P.; Duhamet, J.; Moreau, C. Catal. Today 1995, 24, 165–171.
13. Moreau, C.; Durand, R.; Aliès, F. Ind. Crops Prod. 2000, 11, 237–242.
14. Schwegler, M. A.; Vinke, P.; Van der Eijk, M.; Van Bekkum, H. Appl. Catal. A
1992, 80, 41–57.
solvents is high. To be used as an extracting reagent, the organic
solvent must not only be immiscible with the reactive catalytic
system but also possess a low boiling point, which will facilitate
its separation from the extracted HMF via evaporation. THF with
1
1
5. Shimizu, K.; Uozumi, R.; Satsuma, A. Catal. Commun. 2009, 10, 1849–1853.
6. Benvenuti, F.; Carlini, C.; Patrono, P.; Galletti, A. M. R.; Sbrana, G.; Massucci, M.
A.; Galli, P. Appl. Catal. A 2000, 193, 147–153.
3
its boiling point of only 66 °C, the BmimCl/fructose/SBA-15-SO H
system was most reactive at 120 °C, a temperature far above the
boiling point of THF, was reported to be a good choice in the
extraction of HMF. So THF was screened as an HMF extraction sol-
vent in this work.
17. Karam, A.; Alonso, J. C.; Gerganova, T. I.; Ferreira, P.; Bion, N.; Barrault, J.;
Jérôme, F. Chem. Commun. 2009, 45, 7000–7002.
18. Dias, A. S.; Pilinger, M.; Valente, A. A. J. Catal. 2005, 229, 414–423.
19. Crisci, A. J.; Tucker, M. H.; Lee, M. Y.; Jang, S. G.; Dumesic, J. A.; Scott, S. L. ACS
Catal. 2011, 1, 719–728.
20. Crisci, A. J.; Tucker, M. H.; Dumesic, J. A.; Scott, S. L. Top. Catal. 2010, 53, 1185–
The extraction method was operated with the similar procedure
4
9
1192.
as described previously. After the reaction, some THF was added
into the reaction systems, the semi continuous process for the con-
21. Watanabe, M.; Aizawa, Y.; Iida, T.; Nishimura, R. Appl. Catal. A 2005, 295, 150–
156.
version of fructose to HMF in a THF-BmimCl/SBA-15-SO
biphasic system. The lower phase contains BmimCl, fructose and
SBA-15-SO H, whereas the upper phase contains THF. HMF is ex-
3
H/fructose
22. Asghari, F. S.; Yoshida, H. Ind. Eng. Chem. Res. 2006, 45, 2163–2173.
2
3. Qi, X.; Watanabe, M.; Aida, T. M.; Smith, R. L. Ind. Eng. Chem. Res. 2008, 47,
234–9239.
4. Binder, J. B.; Raines, R. T. J. Am. Chem. Soc. 2009, 131, 1979–1985.
9
3
2
tracted into the THF phase and separated through an evaporation
step. Fructose and THF were added to the system at the beginning
of each consecutive bath of the operation.
25. Moreau, C.; Finiels, A.; Vanoye, L. J. Mol. Catal. A Chem. 2006, 253, 165–169.
2
2
2
6. Qi, X.; Watanabe, M.; Aida, T. M. ChemSusChem 2009, 2, 944–946.
7. Tong, X.; Li, Y. ChemSusChem 2010, 3, 350–355.
8. Zhang, Z.; Wang, Q.; Xie, H.; Liu, W.; Zhao, Z. ChemSusChem 2011, 4, 131–138.
The amounts of the residual HMF and fructose in the reaction
phase were analysed using HPLC. In the whole process operation,
a total of 99.4% of the fructose was reacted and the selectivity to-
wards HMF was 81.1% and corresponding to 93% of the HMF pro-
duced during the whole process was isolated by the THF
extraction.
29. Tong, X.; Ma, Y.; Li, Y. Carbohydr. Res. 2010, 345, 1698–1701.
30. Hu, S.; Zhang, Z.; Zhou, Y.; Han, B. Green Chem. 2008, 10, 1280–1283.
31. Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C.; Jin, S.; Ding, Y.; Wu, G. Green Chem.
2006, 8, 325–327.
32. Zhao, H.; Holladay, J. E.; Brown, H.; Zhang, Z. C. Science 2007, 316, 1597–1600.
3
3
3. Lansalot-Matras, C.; Moreau, C. Catal. Commun. 2003, 4, 517–520.
4. Cao, Q.; Guo, X. C.; Yao, S. X.; Guan, J.; Wang, X. Y.; Mu, X. D.; Zhang, D. K.
Carbohydr. Res. 2011, 346, 956–959.
At suitable temperatures, the high HMF yield, low catalyst cost
35. Ray, D.; Mittal, N.; Chung, W. J. Carbohydr. Res. 2011, 346, 2145–2148.
3
3
3
3
6. Zheng, Y.; Li, J. P.; Zhao, N.; Wei, W.; Sun, Y. H. Micropor. Mesopor. Mater. 2006,
3
and toxicity make this simple SBA-15-SO H-BmimCl system a
9
2, 195–200.
promising choice for fructose dehydration.
7. Margolese, D.; Melero, J. A.; Christiansen, S. C.; Chmelka, B. F.; Stucky, G. D.
Chem. Mater. 2000, 12, 2448–2459.
8. Yang, L. M.; Wang, Y. J.; Luo, G. S.; Dai, Y. Y. Micropor. Mesopor. Mater. 2005, 84,
4
. Conclusions
SBA-15-SO H as a heterogeneous catalyst exhibits excellent
275–282.
9. Wang, X. G.; Cheng, S.; Chan, J. C. C. J. Phys. Chem. C 2007, 111, 2156–2164.
3
40. Mbaraka, I. K.; Radu, D. R.; Lin, V. S. Y.; Shanks, B. H. J. Catal. 2003, 219, 329–
36.
1. Yang, Q. H.; Liu, J.; Yang, J.; Kapoor, M. P.; Inagaki, S.; Li, C. J. Catal. 2004, 228,
65–272.
3
performance in the selective synthesis of HMF from dehydration
of fructose. It is tolerant to high concentration fructose and can
be reused. High fructose conversion (near 100%) and HMF selectiv-
ity (about 81%) were obtained, which almost was the same with
4
2
42. Li, Y.; Zhang, W. H.; Zhang, L.; Yang, Q. H.; Wei, Z. B.; Feng, Z. C.; Li, C. J. Phys.
Chem. B 2004, 108, 9739–9744.