S. De et al. / Applied Catalysis A: General 435–436 (2012) 197–203
203
Delhi for providing the instrument facility through Nano Mission
Initiative.
Appendix A. Supplementary data
Supplementary data associated with this article can be
References
[
[
1] R.A. van Santen, in: G. Centi, R.A. van Santen (Eds.), Catalysis for Renewables,
Wiley-VCH, Weinheim, 2007, pp. 9–19.
2] M.E. Zakrzewska, E. Bogel-Lukasik, R. Bogel-Lukasik, Energy Fuels 24 (2010)
737–745.
[
[
[
3] G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044–4098.
4] A. Corma, S. Iborra, A. Velty, Chem. Rev. 107 (2007) 2411–2502.
5] J.N. Chheda, G.W. Huber, J.A. Dumesic, Angew. Chem. Int. Ed. 46 (2007)
Fig. 8. Recyclability study of TiO2-H catalyst for d-mannose dehydration reaction.
Reaction conditions: d-mannose = 100 mg, TiO2-H = 40 mg, T = 140 C, and t = 5 min.
7
164–7183.
6] Y. Román-Leshkov, C.J. Barrett, Z.Y. Liu, J.A. Dumesic, Nature 447 (2007)
82–986.
7] P. Venkitasubramanian, E.C. Hagberg, P.D. Bloom, Polym. Prepr. (Am. Chem.
Soc. Div.) Polym. Chem. 49 (2008) 914–915.
◦
[
[
9
perhaps mixed with resulting water from the dehydration reac-
tion, the loss in activity of the used catalyst in spent solvent was
not significant, in terms of HMF yield.
[
[
8] A. Gandini, M.N. Belgacem, Prog. Polym. Sci. 22 (1997) 1203–1379.
9] M.E. Zakrzewska, E. Bogel-Lukasik, R. Bogel-Lukasik, Chem. Rev. 111 (2011)
397–417, and references therein.
[
[
10] X.L. Tong, Y. Ma, Y.D. Li, Appl. Catal. A: Gen. 385 (2010) 1–13.
11] M.J. Climent, A. Corma, S. Iborra, Green Chem. 13 (2011) 520–540, and refer-
ences therein.
4
. Conclusion
[
12] V. Degirmenci, E.A. Pidko, P.C.M.M. Magusin, E.J.M. Hensen, ChemCatChem 3
(2011) 969–972.
13] H. Zhao, J.E. Holladay, H. Brown, Z.C. Zhang, Science 316 (2007) 1597–1600.
In conclusion, we have successfully prepared porous TiO2
[
[
nanoparticulate catalysts via biopolymer alginate templating path-
way under hydrothermal conditions and compared the structural
characteristics of the TiO2 materials obtained from the processes.
Three different TiO2 catalysts have been employed to catalyze
the transformation of unutilized sugar derivatives, namely d-
mannose, d-galactose, and lactose to useful platform chemical HMF
14] J.N. Chheda, Y. Roman-Leshkov, J.A. Dumesic, Green Chem.
42–350.
[15] H. Zhao, J.E. Holladay, Z.C. Zhang, US Pat. Appl. (2008) 0,033,187.
[16] G. Yong, Y. Zhang, J.Y. Ying, Angew. Chem. Int. Ed. 47 (2008) 9345–9348.
9 (2007)
3
[
[
17] J.B. Binder, R.T. Raines, J. Am. Chem. Soc. 131 (2009) 1979–1985.
18] Y. Su, H.M. Brown, X. Huang, X.-D. Zhou, J.E. Amonette, Z.C. Zhang, Appl. Catal.
A: Gen. 361 (2009) 117–122.
◦
in DMA–LiCl under microwave irradiation at 140 C, which pro-
[19] S.P.S. Chundawat, B. Venkatesh, B.E. Dale, Biotechnol. Bioeng. 96 (2007)
19–231.
[
2
duced maximum 44% yield. The hydrothermally prepared TiO2
showed considerable mesoporosity. Substrate screening in the cat-
alytic studies revealed that d-mannose is the best candidate to
20] T. Marzialetti, M.B. Valenzuela Olarte, C. Sievers, T.J.C. Hoskins, P.K. Agrawal,
C.W. Jones, Ind. Eng. Chem. Res. 47 (2008) 7131–7140.
[21] P.G. Hobman, J. Dairy Sci. 67 (1984) 2630–2653.
22] Z. Schnepp, S.C. Wimbush, S. Mann, S.R. Hall, CrystEngComm 12 (2010)
410–1415.
[
produce HMF in maximum yield. TiO -H retains its catalytic activ-
2
1
ity for four cycles suggesting potential of our TiO2 nanomaterials
in the biomass conversion.
[23] A.A. Said, R.M. Hassan, Polym. Degrad. Stab. 39 (1993) 393–397.
[24] S. Jagtap, M.K.N. Yenkie, N. Labhsetwar, S. Rayalu, Micropor. Mesopor. Mater.
1
42 (2011) 454–463.
25] D. Chandra, N. Mukherjee, A. Mondal, A. Bhaumik, J. Phys. Chem. C 112 (2008)
668–8674.
26] K.M. Parida, N. Sahu, P. Mohapatra, M.S. Scurrell, J. Mol. Catal. A: Chem. 319
2010) 92–97.
[
[
[
Supporting information
8
(
Recycling results of the conversion of carbohydrates to HMF
under microwave and oil bath heating conditions (Tables S1–S2),
27] S. Dutta, S. De, A.K. Patra, M. Sasidharan, A. Bhaumik, B. Saha, Appl. Catal. A:
Gen. 409–410 (2011) 133–139.
1
13
representative H and C NMR spectra, UV–Vis spectrum and N2
sorption isotherms, pyridine adsorbed FT IR spectra (Figs. S1–S5)
have been provided.
[28] M. Paul, N. Pal, P.R. Rajamohanan, B.S. Rana, A.K. Sinha, A. Bhaumik, Phys. Chem.
Chem. Phys. 12 (2010) 9389–9394.
[
[
29] A.K. Patra, S.K. Das, A. Bhaumik, J. Mater. Chem. 21 (2011) 3925–3930.
30] I.T. Ghampson, C. Newman, L. Kong, E. Pier, K.D. Hurley, R.A. Pollock, B.R. Walsh,
B. Goundie, J. Wright, M.C. Wheeler, R.W. Meulenberg, W.J. DeSisto, B.G. Fred-
erick, R.N. Austin, Appl. Catal. A: Gen. 388 (2010) 57–67.
Acknowledgments
[
31] M.J. Meziani, J. Zajac, D.J. Jones, S. Partyka, J. Roziere, A. Auroux, Langmuir 16
(
2000) 2262–2268.
BS is grateful to the University Grant Commission (UGC), India
for financial support and University of Delhi. SD thanks UGC, India
for a DS Kothari Postdoctoral Fellowship. SD thanks UGC, India
for a Junior Research Fellowship. AKP thanks to CSIR, New Delhi
for Senior Research Fellowship and AB wishes to thank DST, New
[32] S.K. Das, M.K. Bhunia, A.K. Sinha, A. Bhaumik, J. Phys. Chem. C 113 (2009)
8918–8923.
33] J. Papp, S. Soled, K. Dwight, A. Wold, Chem. Mater. 6 (1994) 496–500.
34] H. Yan, Y. Yang, D. Tong, X. Xiang, C. Hu, Catal. Commun. 10 (2009) 1558–1563.
35] J.P. Binder, A.V. Cefali, J.J. Blank, R.T. Raines, Energy Environ. Sci. 3 (2010)
765–771.
[
[
[