F. S. Asghari, H. Yoshida / Carbohydrate Research 341 (2006) 2379–2387
2387
regions were observed. Under sub-CW conditions, no
relationship was observed between catalytic activity
and the surface area of the catalysts. It seems that not
only Brønsted sites, but also Lewis sites of the ZrP sol-
ids, are responsible for their catalytic activities. The ZrP
solids in amorphous forms were found to have the same
or higher activities than the other crystalline forms.
By application of ZrP solids as catalysts under sub-
CW conditions, with amorphous forms of the catalyst,
about 80% of fructose was decomposed at 240 ꢀC after
12. Szmant, H. H.; Chundury, D. D. J. Chem. Technol.
Biotechnol. 1981, 31, 135–145.
1
1
3. Mendnick, M. L. J. Org. Chem. 1962, 27, 398–403.
4. Chen, J.; Kuster, B. F. M.; Der Wiele, K. V. Biomass
Bioenergy 1991, 1, 217–223.
15. Jow, J.; Rorrer, G. L.; Hawley, M. C. Biomass 1987, 14,
185–194.
1
6. Salak Asghari, F.; Yoshida, H. Ind. Eng. Chem. Res. 2006,
5, 2163–2173.
4
1
1
7. Kuster, B. F. M. Starch 1990, 42, 314–321.
8. Seri, K.; Inoue, Y.; Ishida, H. Bull. Chem. Soc. Jpn. 2001,
74, 1145–1150.
1
20 s, and the selectivity of the dehydration reaction of
19. Garber, J. D.; Jones, R. E. U. S. Patent 3,483,228, 1969.
2
2
0. Szmant, H. H.; Chundury, D. D. J. Chem. Technol.
Biotechnol. 1981, 31, 135–145.
1. Mercadier, D.; Rigal, L.; Gaset, A.; Gorrichon, J. P. J.
Chem. Technol. Biotechnol. 1981, 31, 489–496.
fructose to HMF rose to 61%. Under the same experi-
mental conditions, starting with glucose as substrate,
3
9% of selectivity was obtained. The only identified
byproducts were soluble polymers and furaldehyde.
These solid acids showed important improvements
with respect to using mineral acids. They can be easily
separated from reaction media and regenerated and
used for several runs. Meanwhile, no corrosion occurred
under sub-CW conditions with ZrP solid acids.
Finally, we believe that, based on the type of reactions
and substrates, optimization, and modification of these
solid acids will increase the performance of catalysts
under sub-CW conditions.
22. Nakamura, Y. Jpn. Kokai Tokkyo Koho, Jpn. Pat.
55013243, 1980.
2
3. Armaroli, T.; Busca, G.; Carlini, C.; Giuttari, M.; Galletti,
A. M. R.; Sbeana, G. J. Mol. Catal. A: Chem. 2000, 151,
2
33–243.
2
4. Moreau, G.; Durand, R.; Razigade, S.; Duhamet, J.;
Faugeras, P.; Rivalier, P.; Ros, P.; Avignon, G. Appl.
Catal., A 1996, 145, 211–224.
2
2
5. Okuhara, T. Chem. Rev. 2002, 102, 3641–3666.
6. Bogdanov, S. G.; Valiev, E. Z.; Dorofeev, Yu A.; Pirogov,
A. N.; Sharygin, L. M.; Moisseev, V. E.; Galkin, V. M. J.
Phys.: Condens. Matter 1997, 9, 4031–4039.
2
2
2
3
3
7. Segawa, K.; Nakajima, Y. J. Catal. 1986, 101, 81–89.
8. Clearfield, A.; Thakur, D. J. Catal. 1980, 65, 185–194.
9. Thakur, D.; Clearfield, A. J. Catal. 1981, 69, 230–233.
0. Moffat, J. B. Catal. Rev. Sci. Eng. 1978, 18, 18–25.
1. Segawa, K.; Ozawa, T. J. Mol. Catal. A: Chem. 1999, 141,
Acknowledgements
A part of this work was supported by the ministry of
Education, Culture, Sports, Science and Technology of
Japan in the form of 21st Century COE program
E19, Science and Engineering for Water Assisted Evo-
lution of Valuable Resources and Energy from Organic
Wastes) which is gratefully acknowledged.
2
49–255.
32. Iwamoto, M.; Nomura, Y.; Kagawa, S. J. Catal. 1981, 69,
234–237.
3
3. Watanabe, M.; Aizawa, Y.; Iida, T.; Aida, T. M.; Levy,
(
C.; Sue, K.; Inomata, H. Carbohydr. Res. 2005, 340, 1925–
1
930.
3
4. Benvenuti, F.; Carlini, C.; Patrono, P.; Raspolli, G. A. M.;
Sbrana, G.; Antonietta, M. M.; Galli, P. Appl. Catal., A
2
000, 193, 147–153.
35. Clearfield, A.; Stynes, J. A. J. Inorg. Nucl. Chem. 1964, 26,
17–129.
References
1
3
3
6. Clearfield, A.; Thakur, D. Appl. Catal. 1986, 26, 1–26.
7. Yoshida, H.; Tavakoli, O. J. Chem. Eng. Jpn. 2004, 37,
1
2
. Fukushima, Y. R&D Rev. Toyota CRDL 2000, 35, 1–9.
. Jennings, J. M.; Bryson, T. A.; Gibson, J. M. Green Chem.
2
53–260.
2
000, 2, 87–88.
3
3
4
4
4
8. Alberti, G.; Costantino, U.; Millini, R.; Perego, G.;
Vivani, R. J. Solid State Chem. 1994, 113, 289–295.
9. Barton, T. J.; Bull, L. M.; Klempere, W. G.; Loy, D. A.
Chem. Mater. 1999, 11, 2633–2656.
0. Hattori, T.; Ishiguro, A.; Murakami, Y. J. Inorg. Nucl.
Chem. 1978, 40, 1107–1111.
1. Busca, G.; Lorenzelli, V.; Galli, P.; Ginestra, A.; Patrono,
P. J. Chem. Soc., Faraday Trans. 1987, 83, 853–864.
2. Ginestra, A. L.; Patrono, P.; Berardelli, M. L.; Galli, P.;
Ferragina, C.; Massucci, M. A. J. Catal. 1987, 103, 346–
3
4
5
. Antal, M. J.; Mok, W. S. Res. Thermochem. Biomass
Convers. 1988, 464–472.
. Antal, M. J.; Mok, W. S. Carbohydr. Res. 1990, 199, 91–
1
09.
. Bicker, M.; Hirth, J.; Vogel, H. Green Chem. 2003, 5, 280–
84.
2
6
7
. Fleche, G.; Toulouse, A. G. U. S. Patent 4,339,387, 1982.
. Seri, K.; Ishida, H. J. Mol. Catal. A: Chem. 1996, 112,
L163–L165.
8
9
. Lewkowski, J. Arkivoc 2001, 2, 17–54.
. Kuster, B. F. M.; Der Baan, H. V. Carbohydr. Res. 1977,
3
56.
4
4
3. Kuster, B. F. M. Carbohydr. Res. 1977, 54, 177–183.
4. Moreau, C.; Durand, R.; Pourcheron, C.; Razigade, S.
Ind. Crops Prod. 1994, 3, 85–90.
5
4, 165–176.
0. Harris, D. W.; Feather, M. S. J. Org. Chem. 1974, 39, 724–
25.
1. Moye, C. J.; Goldsck, R. J. J. Appl. Chem. 1966, 16, 206–
08.
1
1
7
4
5. Kuster, B. F. M.; Temmink, H. M. G. Carbohydr. Res.
1
977, 54, 185–191.
2