C O M M U N I C A T I O N S
tol/news/uk/article544334.ece. (b) TATP has been used during various
recent terrorist acts, including in (i) Richard Reid’s shoe bomb on American
Airlines Flight 63 (Cooper, R. T. Los Angeles Times, December 29, 2001,
July 7th 2005 London bombings. (Townsend, M. The real story of 7/7.
theobserver.uknews); and (iii) the attempted bombing in Northwest Airlines
Flight 253 on Christmas Day, December 25, 2009 (“Indictment in U.S. V.
Abdulmutallab_Indictment.pdf (retrieved January 10, 2010).
(3) Laine, D. F.; Roske, C. W.; Cheng, I. F. Anal. Chim. Acta 2008, 608, 56–
60.
Figure S7); practically no variation was observed in the color
difference maps, and a tight clustering of data collected regardless
of array age was obtained. In addition, three separate printing
batches of arrays gave nearly identical results for tests at 1 ppm
and 10 ppm TATP vapor (SI Figure S8), which demonstrates
excellent reproducibility for printing of the arrays and their response
to TATP.
Finally, it should be noted that our array can also distinguish
TATP from H2O2 or other volatile oxidants (e.g., hypochlorite
bleach, peracetic acid, and tert-butyl hydroperoxide). As clearly
shown in Figures 3 and S9, there is no confusion in the array
response among TATP, H2O2, Clorox bleach, peracetic acid, or tert-
butyl hydroperoxide in sextuplicate trials at 10 ppm. Furthermore,
we note that Amberlyst-15 does not affect the array response to
H2O2 or the other oxidants but dramatically changes the array
response to TATP vapor (due to its acid catalyzed decomposition),
which provides additional discrimination between TATP vapor and
other oxidants (SI Figure S9).
While the laboratory studies reported here made use of inex-
pensive flatbed scanners for imaging, we have recently constructed
a fully functional prototype hand-held device, as shown in SI Figure
S10, which has a 3-fold improved S/N compared to the flatbed
scanners. Combined with a low dead volume cartridge (SI Figure
S11), a hand-held device could present a rapid, inexpensive, and
highly sensitive method for portable monitoring of TATP vapor,
e.g., for screening of luggage.
In conclusion, we have created a simple, disposable colorimetric
sensor array that is capable of sensitive and semiquantitative
detection of the vapor phase of the primary explosive TATP with
limits of detection below 0.02% of its saturation vapor pressure.
The array is highly selective for TATP, is unaffected by changes
in humidity or by the presence of many common potential
interferents, and can differentiate TATP from other chemical
oxidants.
(4) Dubnikova, F.; Kosloff, R.; Zeiri, Y.; Karpas, Z. J. J. Phys. Chem. A 2002,
106, 4951–4956.
(5) (a) Schulte-Ladbeck, R.; Vogel, M.; Karst, U. Anal. Bioanal. Chem. 2006,
386, 559–565. (b) Burks, R. M.; Hage, D. S. Anal. Bioanal. Chem. 2009,
395, 301–313.
(6) (a) ACRO Security Technologies: ACRO-P.E.T. . (b) Mistral Security Inc.
Willer, U.; Burgmeier, J.; Braunschweig, B.; Schade, W.; Blaser, S.;
Hvozdara, L.; Mu¨ller, A.; Holl, G. Appl. Phys. B 2008, 92, 327–333. (d)
Santillan, J.; Brown, C.; Jalenak, W. Proc. SPIE 2007, 6540, 65400P. (e)
Staples, E. In Electronic Noses & Sensors for the Detection of ExplosiVes;
Gardner, J., Yinon, J., Eds.; Kluwer: Dordrecht, 2004.
(7) (a) Schulte-Ladbeck, R.; Kolla, P.; Karst, U. Anal. Chem. 2003, 75, 731–
735. (b) Wilson, P. F.; Prince, B. J.; McEwan, M. J. Anal. Chem. 2006,
78, 575–579. (c) Schulte-Ladbeck, R.; Edelmann, A.; Quinta´s, G.; Lendl,
B.; Karst, U. Anal. Chem. 2006, 78, 8150–8155. (d) Cotte-Rodr´ıguez, I.;
Herna´ndez-Soto, H.; Chen, H.; Cooks, R. G. Anal. Chem. 2008, 80, 1512–
1519. (e) Lindley, R.; Normand, E.; Howieson, I.; McCulloch, M.; Black,
P.; Lewis, C.; Foulger, B. Proc. SPIE 2007, 6741, 67410P. (f) Lindley,
R.; Normand, E.; McCulloch, M.; Black, P.; Howieson, I.; Lewis, C.;
Foulger, B. Proc. SPIE 2008, 7119, 71190K.
(8) (a) Schulte-Ladbeck, R.; Karst, U. Anal. Chim. Acta 2003, 482, 183–188.
(b) Malashikhin, S.; Finney, N. S. J. Am. Chem. Soc. 2008, 130, 12846–
12847.
(9) (a) Germain, M. E.; Knapp, M. J. Inorg. Chem. 2008, 47, 9748–9750. (b)
Lu, D.; Cagan, A.; Munoz, R. A. A.; Tangkuaram, T.; Wang, J. Analyst
2006, 131, 1279–1281. (c) Sella, E.; Shabat, D. Chem. Commun. 2008,
5701–5703. (d) Apblett, A.; Kiran, B.; Malka, S.; Materer, N.; Piquette,
A. Ceram. Trans. 2005, 172, 29–35.
(10) (a) Rakow, N. A.; Suslick, K. S. Nature 2000, 406, 710–713. (b) Suslick,
K. S.; Bailey, D. P.; Ingison, C. K.; Janzen, M.; Kosal, M. E.; McNamara,
W. B., III; Rakow, N. A.; Sen, A.; Weaver, J. J.; Wilson, J. B.; Zhang, C.;
Nakagaki, S. Quim. NoVa 2007, 30, 677–681.
(11) (a) Janzen, M. C.; Ponder, J. B.; Bailey, D. P.; Ingison, C. K.; Suslick,
K. S. Anal. Chem. 2006, 78, 3591–3600. (b) Lim, S. H.; Feng, L.; Kemling,
J. W.; Musto, C. J.; Suslick, K. S. Nature Chem. 2009, 1, 562–567. (c)
Feng, L.; Musto, C. J.; Kemling, J. W.; Lim, S. H.; Suslick, K. S. Chem.
Commun. 2010, 46, 2037–2039. (d) Feng, L.; Musto, C. J.; Suslick, K. S.
J. Am. Chem. Soc. 2010, 132, 4046–4047.
Acknowledgment. This work was supported through the NIH
Genes, Environment and Health Initiative through Award
U01ES016011.
(12) (a) Zhang, C.; Suslick, K. S. J. Am. Chem. Soc. 2005, 127, 11548–11549.
(b) Musto, C. J.; Lim, S. H.; Suslick, K. S. Anal. Chem. 2009, 81, 6526–
6533.
(13) Armitt, D.; Zimmermann, P.; Ellis-Steinborner, S. Rapid Commun. Mass
Spectrom. 2008, 22, 950–958.
Supporting Information Available: Experimental details, Figures
S1-S11, and Tables S1-S2. This material is available free of charge
(14) Amberlyst-15 is manufactured by Rohm and Haas and available from
Sigma-Aldrich.
(15) Jolliffe, I. T. Principal Component Analysis; Springer-Verlag: New York,
2002.
(16) Oxley, J. C.; Smith, J. L.; Shinde, K.; Moran, J. Propellants, Explos.,
Pyrotech. 2005, 30, 127–130.
References
(1) Wolfenstein, R. Chem. Ber. 1895, 28, 2265–2269.
JA107419T
9
J. AM. CHEM. SOC. VOL. 132, NO. 44, 2010 15521