Organic Letters
Letter
(15) Nair, V.; Panicker, S. B.; Augustine, A.; George, T. G.; Thomas,
S.; Vairamani, M. Tetrahedron 2001, 57, 7417−7422.
(16) Kosiova, I.; Janicova, A.; Kois, P. Beilstein J. Org. Chem. 2006, 2,
No. 23. DOI: 10.1186/1860-5397-2-23.
Scheme 3. Cu-Catalyzed Oxazole Formation
(17) (a) The isocyano enone was used without purification because
of a lability on silica gel: Kotha, S.; Sreenivasachary, N. Bioorg. Med.
Chem. Lett. 1998, 8, 257. (b) Kotha, S.; Brahmachary, E.;
Sreenivasachary, N. Tetrahedron Lett. 1998, 39, 4095−4098.
(18) No absorptions for an isocyanide group were detected by IR
analysis of the crude reaction mixture, suggesting preferential attack on
the isocyanide.
(19) Use of catalytic or substoichiometric base led to incomplete
conversion accompanied by unidentified materials. The optimal
procedure employed 1.1 equiv of base and 1.5 equiv of nucleophile
(see Table 2); the excess nucleophile may provide an adventitious
proton source.
(20) 1,3-Cyclopentanedione, 2-nitropropane, and lithiated cyclo-
hexane carbonitrile gave complex reaction mixtures with minimal
oxazole formation.
(21) Li and Na have different coordination preferences in metalated
nitriles: Fleming, F. F.; Shook, B. Tetrahedron 2002, 58, 1−23.
(22) Attempted additions with ethyl acetoacetate and nitromethane
afforded the corresponding oxazoles in 28% and 26% yield,
respectively.
(23) (a) Dattelbaum, J. D.; Singh, A. J.; Field, J. J.; Miller, J. H.;
Northcote, P. T. J. Org. Chem. 2015, 80, 304−312. (b) Robinson, P. J.;
Cheng, H. C.; Black, C. K.; Schmidt, C. J.; Kariya, T.; Jones, W. D.;
Dage, R. C. J. Pharmacol. Exp. Ther. 1990, 255, 1392−1398.
(24) Performing the reaction in D2O as the solvent resulted in
(25) The basic conditions cause partial deprotonation of the
malonate in 6t that leads, upon workup, to a mixture of mono- and
dideuterated oxazoles. Correspondingly, attempts to trap the cuprated
oxazole with benzoyl chloride, TMSCl, and iodomethane before
protonation were unsuccessful.
REFERENCES
■
(1) Nenajdenko, V. G. Isocyanide Chemistry. Applications in Synthesis
and Material Science; VCH: Weinheim, 2012.
(2) (a) Garson, M. J.; Simpson, J. S. Nat. Prod. Rep. 2004, 21, 164−
179. (b) Edenborough, M. S.; Herbert, R. B. Nat. Prod. Rep. 1988, 5,
229−245.
́
(3) Ramozzi, R.; Cheron, N.; Braïda, B.; Hiberty, P. C.; Fleurat-
Lessard, P. New J. Chem. 2012, 36, 1137−1140.
(4) Chakrabarty, S.; Choudhary, S.; Doshi, A.; Liu, F.-Q.; Mohan, R.;
Ravindra, M. P.; Shah, D.; Yang, X.; Fleming, F. F. Adv. Synth. Catal.
2014, 356, 2135−2196.
(5) (a) Multicomponent Reactions in Organic Synthesis; Zhu, J., Wang,
Q., Wang, M.-X., Eds.; Wiley−VCH: Weinheim, 2014. (b) Domling,
̈
A. Chem. Rev. 2006, 106, 17−89. (c) Zhu, J. Eur. J. Org. Chem. 2003,
2003, 1133−1144.
(6) Conjugate additions to oxoalkene nitriles are facile: Fleming, F.
F.; Pu, Y.; Tercek, F. J. J. Org. Chem. 1997, 62, 4883−4885.
(7) (a) Honma, M.; Kirihata, M.; Uchimura, Y.; Ichimoto, I. Biosci.,
Biotechnol., Biochem. 1993, 57, 659−661. (b) Kirihata, M.; Sakamoto,
A.; Ichimoto, I.; Ueda, H.; Honma, M. Agric. Biol. Chem. 1990, 54,
1845−1846. (c) Schollkopf, U.; Meyer, R. Angew. Chem., Int. Ed. Engl.
̈
1975, 14, 629−630. (d) Schollkopf, U.; Harms, R.; Hoppe, D. Liebigs
̈
Ann. Chem. 1973, 1973, 611−618.
(8) (a) Bloom, J. D.; DiGrandi, M. J.; Dushin, R. G.; Curran, K. J.;
Ross, A. A.; Norton, E. B.; Terefenko, E.; Jones, T. R.; Feld, B.; Lang,
S. A. Bioorg. Med. Chem. Lett. 2003, 13, 2929−2932. Atkinson, K. A.;
Beretta, E. E.; Brown, J. A.; Castrodad, M.; Chen, Y.; Cosgrove, J. M.;
Du, P.; Litchfield, J.; Makowski, M.; Martin, K.; McLellan, T. J.;
Neagu, C.; Perry, D. A.; Piotrowski, D. W.; Steppan, C. M.; Trilles, R.
Bioorg. Med. Chem. Lett. 2011, 21, 1621−1625. Nunami, K.-i.; Yamada,
M.; Fukui, T.; Matsumoto, K. J. Org. Chem. 1994, 59, 7635−7642.
(9) Suginome, M., Ito, Y., Eds. Science of Synthesis; Thieme: Stuttgart,
2004; Vol. 19, pp 445−530.
(10) (a) Kraft, P.; Jordi, S.; Denizot, N.; Felker, I. Eur. J. Org. Chem.
2014, 2014, 554−563. (b) Mdoe, J. E. G.; Macquarrie, D. J.;
Clark, J. H. J. Mol. Catal. A: Chem. 2003, 198, 241−247.
(11) The formamides are generated efficiently as indicated by the
yield determined by use of an internal standard shown in parentheses.
However, purification of the formamides on various chromatographic
matrices led to low isolated yields because of irreversible adsorption.
(12) Keating, T. A.; Armstrong, R. W. J. Am. Chem. Soc. 1996, 118,
2574−2583.
(13) Ene formamides were minor components in the crude reaction
mixture.
(14) Patonay, T.; Kon
40, 2797−2847.
́ ́ ́
ya, K.; Juhasz-Toth, E. Chem. Soc. Rev. 2011,
D
Org. Lett. XXXX, XXX, XXX−XXX