cific noncovalent interactions4 are among the most investi-
gated approaches. Introduction of planar electron-rich or
electron-deficient fused heterocycles into the oligothiophene
backbone influences the frontier orbitals energies and the
self-assembly capability.5 Moreover, the inner planar core
combined with alkyl ends promotes liquid crystallinity (LC).6
Less attention has been devoted to the effects of the insertion
of alkyl-bridged heterocycles.7 Methylene- or alkoxyalkyl-
bridged bithienyl cores induce conformational changes that
strongly affect the extent of π-π delocalization and thus
the spectral features.7e,f
deprotection/bromination was obtained in one pot by treating
4 with PBr3
yield). Ring closure of 5 occurred spontaneously on standing
at room temperature in fluorobenzene (70%
at room temperature(67% yield, Scheme 1).
Scheme 1a
Here, we introduce nonsymmetric and conformationally
flexible ꢀ,ꢀ′-alkylenesulfanyl-bridged bithienyls (DPE and
DPY) as inner cores for alkyl-ended oligothiophenes. An
unprecedented and direct synthetic approach to DPE and
DPY, based on an intramolecular C-S bond formation, is
presented. Subsequent chemical manipulation through Pd-
catalyzed cross-couplings furnished new asymmetric olig-
othiophenes. We demonstrate that in this way a fine tuning
of electronic, self-organization, and thermal behavior of the
final oligomer can be simultaneously achieved.
a[Pd(0)] ) [Pd(PPh3)4]; THP ) tetrahydro-4H-pyranyl.
The synthesis of 5,6-dihydrodithieno[3,2-b:2′,3′-d]thiepine
(DPE) was efficiently achieved by one-pot [Pd(PPh3)4]-
catalyzed Stille coupling reaction between the stannyl
derivative 18 and bromoderivative 2 (toluene, 112 °C, 40 h,
80% yield, Scheme 1). Reaction of 1 with 2-bromo-3-
(bromomethyl)thiophene led to a complex mixture of uni-
dentified products. Therefore, the synthesis of 5H-dithieno[3,2-
b:2′,3′-d]thiopyrane DPY relied on the key intermediate
bithiophene 4, which was prepared via Stille coupling
between compounds 1 and 3 (45 h, 65% yield). The
From a mechanistic point of view, the formation of DPE
and DPY can be explained in terms of intramolecular SN2
reaction with formation of a sulfonium salt, followed by
bromide-assisted demethylation (Scheme 2).9 This hypothesis
Scheme 2
(2) (a) Murphy, A. R.; Fre´chet, J. M. J. Chem. ReV. 2007, 107, 1066–
1096. (b) Electronic Materials: The Oligomer Approach; Mu¨llen, K.,
Wegner, G., Eds.; Wiley-VCH: New York, 1998. (c) Roncali, J. Chem.
ReV. 1997, 97, 173–205.
(3) (a) Nicolas, Y.; Blanchard, P.; Levillain, E.; Allain, M.; Mercier,
N.; Roncali, J. Org. Lett. 2004, 6, 273–276. (b) Bilge, A.; Zen, A.; Forster,
F.; Li, H.; Galbrecht, F.; Nehls, B. S.; Farrell, T.; Neherb, D.; Scherf, U. J.
Mater. Chem. 2006, 16, 3177–3182. (c) Yu, K.; Chernichenko, Sumerin,
V. V.; Shpanchenko, R. V.; Balenkova, E. S.; Nenajdenko, V. G. Angew.
Chem., Int. Ed. 2006, 45, 7367–7370.
was confirmed by the isolation of bromo-derivatives 5 and
6, which spontaneously convert to DPY and DPE.
(4) (a) Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning,
A. P. H. J. Chem. ReV. 2005, 105, 1491–1546. (b) Kato, T.; Mizoshita, N.;
Kishimoto, K. Angew. Chem., Int. Ed. 2006, 45, 38–68.
DPY and DPE were then used to build the asymmetric
oligothiophenes 10 and 11 through a procedure based on
Stille coupling. To this purpose, bistannanes 7 and 8 were
coupled to 2-bromo-5-n-butyl-thiophene 9 under standard
conditions (Scheme 3). Noteworthy, despite the relatively
poor reaction yield, our approach is more convenient than
the ring-by-ring growth required to synthesize asymmetric
nonidentical alkyl-ended oligothiophenes, since no tedious
purifications to remove “symmetrical” side products are
required.10 To evaluate the role of conformational flexibility
and molecular asymmetry in oligomers 10 and 11, the
symmetric and planar derivative 1411 was prepared by using
dithienothiophene, DTT12 as inner core. For the synthesis
of this oligomer, dibromination of DTT followed by Stille
(5) Kim, H.-S.; Kim, Y.-H.; Kim, T.-H.; Noh, Y.-Y.; Pyo, S.; Yi, M. H.;
Kim, D.-Y.; Kwon, S.-K. Chem. Mater. 2007, 19, 3561–3567. (b) Tian,
H.; Wang, J.; Shi, J.; Yan, D.; Wang, L.; Geng, Y.; Wang, F. J. Mater.
Chem. 2005, 15, 3026–3033. (c) Ando, S.; Murakami, R.; Nishida, J.; Tada,
H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127,
14996–14997.
(6) Melucci, M.; Favaretto, L.; Bettini, C.; Gazzano, M.; Camaioni, N.;
Maccagnani, P.; Ostoja, P.; Monari, M.; Barbarella, G. Chem. Eur. J. 2007,
13, 10046–10054.
(7) For fluorene-thiophene co-oligomers, see: (a) Surin, M.; Sonar, P.;
Grimsdale, A. C.; Mu¨llen, K.; De Feyter, S.; Habuchi, S.; Sarzi, S.; Van
der Auweraer, M.; De Schryver, F. C.; Cavallini, M.; Moulin, J.-F.;
Biscarini, F.; Femioni, C.; Lazzaroni, R.; Lecle`re, P. J. Mat. Chem. 2007,
17, 728–735. (b) Tian, H.; Wang, J.; Shi, J.; Yan, D.; Wang, L.; Geng, Y.;
Wang, F. J. Mater. Chem. 2005, 15, 3026–3033For all-thienyl-based
systems, see: (c) Jousselme, B.; Blanchard, P.; Levillain, E.; Delaunay, J.;
Allain, M.; Richomme, P.; Rondeau, D.; Gallego-Planas, N.; Roncali, R.
J. Am. Chem. Soc. 2003, 125, 1363–1370. (d) Pasini, M.; Destri, S.; Botta,
C.; Porzio, W. Tetrahedron 1999, 55, 14985–14994. (e) Benincori, T.;
Bongiovanni, G.; Botta, C.; Cerullo, G.; Lanzani, G.; Mura, A.; Rossi, L.;
Sannicolo′, F.; Tubino, R. J. Phys. ReV. B 1998, 58, 9082–9086. (f) Zerbi,
G.; Radaelli, G.; Veronelli, M.; Brenna, E.; Sannicolo′, F.; Zotti, G. J. Chem.
Phys. 1993, 98, 4531–4541.
(9) (a) Shevchenko, N. E.; Nenajdenko, V. G.; Balenkova, E. S. Synthesis
2003, 1191–1200. (b) Koval′, I. V. Russ. J. Org. Chem. 2007, 43, 319–
346.
(8) Barbarella, G.; Zambianchi, M. Tetrahedron 1994, 50, 11249–11256.
3666
Org. Lett., Vol. 10, No. 17, 2008