Conversion of l-Cysteine into d-α-Amino Acids
[12]
[13]
L. Ghosez, I. George-Koch, L. Patiny, M. Houtekie, P. Bovy,
P. Nshimyumukiza, T. Phan, Tetrahedron 1998, 54, 9207–9222.
a) T. Onoda, R. Shirai, Y. Koiso, S. Iwasaki, Tetrahedron 1996,
52, 14543–14562; b) T. Fujisawa, M. Nagai, Y. Koike, M. Shim-
izu, J. Org. Chem. 1994, 59, 5865–5867; c) H. Yang, X. C.
Sheng, E. M. Harrington, K. Ackermann, A. M. Garcia, M. D.
Lewis, J. Org. Chem. 1999, 64, 242–251; d) C. E. O’Connell, K.
Ackermann, C. A. Rowell, A. M. Garcia, M. D. Lewis, C. E.
Schwartz, Bioorg. Med. Chem. Lett. 1999, 9, 2095–2100.
D. Parker, Chem. Rev. 1991, 91, 1441–1457.
a) N. Kornblum, H. E. DeLaMare, J. Am. Chem. Soc. 1951,
73, 880–881; b) R. Hecht, C. Rüchardt, Chem. Ber. 1963, 96,
1281–1284; c) G. Rousseau, P. LePerchec, J. M. Conia, Synthe-
sis 1978, 67–70; d) S. L. Schreiber, W.-F. Liew, Tetrahedron
Lett. 1983, 24, 2363–2366; e) E. D. Mihelich, D. J. Eickhoff, J.
Org. Chem. 1983, 48, 4135–4137; f) H. Quast, T. Herkert, C. A.
Klaubert, Liebigs Ann. Chem. 1987, 965–970; g) R. S. Drago,
R. Riley, J. Am. Chem. Soc. 1990, 112, 215–218.
A. J. Mancuso, D. S. Brownfain, D. Swern, J. Org. Chem. 1979,
44, 4148–4150.
E. Kaiser Sr., J. P. Tam, T. M. Kubiak, R. B. Merrifield, Tetra-
hedron Lett. 1988, 29, 303–306.
For (R)-18, the optical rotation {[α]D = –283 (c = 0.27, AcOH)}
matches literature values: [α]D = +275 (c = 0.16, AcOH)[19b]
and [α]D = +297.9 (c = 0.3, AcOH),[19f] both for (S)-18. In the
case of (R)-22 {[α]D = –123 (c = 1.52, CHCl3)} a small differ-
ence might be due to a different solvent {[α]D = +103 (c = 2,
CH3OH),[19c] [α]D = +98.6 (c = 1.52, CH3OH),[19e] both (S)-
22}. The difference for (R)-20 {[α]D = –140.2 (c = 0.51,
5.55, N 5.98, P 13.25; found C 30.87, H 5.60, N 5.94, P 13.06.
1
HRMS: m/z [M – H]– calcd. 224.03295; found 224.0330. H NMR
(400 MHz, D2O): δ = 1.77 [d, J = 1 Hz, CH3-C(4)], 4.28 [d, J =
7 Hz, 2H-C(5)], ca. 4.73 [covered by solvent peak, H-C(2)], 5.51
[dq, J = 9.5, 1 Hz, H-C(3)] ppm. 13C NMR (62.9 MHz, D2O): δ =
174.3 [C(1)], 146.1 [d, J = 6 Hz, C(4)], 117.7 [C(3)], 71.3 [d, J =
5 Hz, C(5)], 53.7 [C(2)], 16.1 [CH3-C(4)] ppm. 31P NMR
(101.3 MHz, 1H-decoupled, D2O): δ = 0.014 ppm. For HSQC data,
see the Supporting Information.
[14]
[15]
Supporting Information (see footnote on the first page of this arti-
cle): NMR spectra and capillary GC traces.
[1] a) R. M. Williams, Synthesis of Optically Active α-Amino Acids,
Organic Chemistry Series, vol. 7 (Eds.: J. E. Baldwin, P. D.
Magnus), Pergamon Press, Oxford, 1989; b) R. O. Duthaler,
Tetrahedron 1994, 50, 1539–1650; c) J.-A. Ma, Angew. Chem.
Int. Ed. 2003, 42, 4290–4299; d) Asymmetric Synthesis and Ap-
plication of α-Amino Acids, ACS Symposium Series, 2009 (Eds.:
V. A. Soloshonok, K. Izawa).
[2] a) P. Garner, J. M. Park, J. Org. Chem. 1987, 52, 2361–2364; b)
G. Bold, T. Allmendinger, P. Herold, L. Moesch, H.-P. Schaer,
R. O. Duthaler, Helv. Chim. Acta 1992, 75, 865–882; c) P. Gar-
ner, J. M. Park, Org. Synth. 1992, 70, 18–28.
[3] Numerous such conversions of 2 or its enantiomer – both com-
mercially available – have been published,[1b,2b] 75 papers ap-
peared during the last 15 years. For some recent examples, see:
a) J. Clerc, B. Schellenberg, M. Groll, A. S. Bachmann, R.
Huber, R. Dudler, M. Kaiser, Eur. J. Org. Chem. 2010, 3991–
4003; b) A. Pinto, P. Conti, M. De Amici, L. Tamborini, U.
Madsen, B. Nielsen, T. Christensen, H. Bräuner-Osborne, C.
De Micheli, J. Med. Chem. 2008, 51, 2311–2315; c) J. E. M.
Booker, A. Boto, G. H. Churchill, C. P. Green, M. Ling, G.
Meek, J. Prabhakaran, D. Sinclair, A. J. Blake, G. Pattenden,
Org. Biomol. Chem. 2006, 4, 4193–4205.
[4] a) R. B. Woodward, K. Heusler, J. Gosteli, P. Naegeli, W. Op-
polzer, R. Ramage, S. Ranganathan, H. Vorbrüggen, J. Am.
Chem. Soc. 1966, 88, 852–853; b) R. B. Woodward, Science
1966, 153, 487–493.
[5] a) J. E. Baldwin, A. Au, M. Christie, S. B. Haber, D. Hesson,
J. Am. Chem. Soc. 1975, 97, 5957–5958; b) J. E. Baldwin, R. T.
Freeman, C. Lowe, C. J. Schofield, E. Lee, Tetrahedron 1989,
45, 4537–4550.
[6] a) M. Iwakawa, B. M. Pinto, W. A. Szarek, Can. J. Chem. 1978,
56, 326–335; b) N. Tokitoh, Y. Igarashi, W. Ando, Tetrahedron
Lett. 1987, 28, 5903–5906; c) D. Seebach, A. Jeanguenat, J.
Schmidt, T. Maetzke, Chimia 1989, 43, 314–317.
[7] a) T. Takata, K. Hoshino, E. Takeuchi, Y. Tamura, W. Ando,
Tetrahedron Lett. 1984, 25, 4767–4770; b) T. Takata, L. Huang,
W. Ando, Chem. Lett. 1985, 1705–1708; c) T. Takata, Y. Ta-
mura, W. Ando, Tetrahedron 1985, 41, 2133–2137; d) T. Akas-
ada, A. Sakurai, W. Ando, J. Am. Chem. Soc. 1991, 113, 2696–
2701.
[16]
[17]
[18]
CHCl3)} is, however, larger {[α]D
= –50.9 (c = 0.75,
CH3OH),[19e] (R)-20}.
[19]
a) U. Schöllkopf, J. Nozulak, U. Groth, Tetrahedron 1984, 40,
1409–1417; b) L. Havlícˇek, J. Hanusˇ, Radioisotopy 1988, 29,
157–163; c) N. A. Sasaki, C. Hashimoto, R. Pauly, Tetrahedron
Lett. 1989, 30, 1943–1946; d) M. P. Sibi, P. A. Renhowe, Tetra-
hedron Lett. 1990, 31, 7407–7410; e) P. L. Beaulieu, J.-S. Du-
ceppe, C. Johnson, J. Org. Chem. 1991, 56, 4196–4204; f) J.
Mulzer, G. Funk, Synthesis 1995, 101–112; g) J. Hang, L.
Deng, Bioorg. Med. Chem. Lett. 2009, 19, 3856–3858.
D. A. Evans, T. C. Britton, J. A. Ellman, Tetrahedron Lett.
1987, 28, 6141–6144.
The solvolysis of the acetonide 23 was followed by NMR
analysis, with the disappearance of the signals of CH(4) of 23
[δ = 5.56 ppm (1H), 60.0 ppm (13C)], and the appearance of the
signals of CH(2) of 18 hydrobromide at higher field [δ =
4.83 ppm (1H), 51.9 ppm (13C)]. Interestingly, the protons of
the acetonide methyl groups of 23 are exchanged by deuterium
in CD3OD. In methanol, partially deuterated dimethoxy-pro-
pane is formed, whereas acetone is the product in water. The
optical purity of 18 obtained from lactone 21 via 23 and
derivatization to 20 is 99%.
[20]
[21]
[22]
[23]
[24]
A. Basha, M. Lipton, S. M. Weinreb, Tetrahedron Lett. 1977,
4171–4174
J. W. Drijfhout, E. W. Perdijk, W. J. Weijer, W. Bloemhoff, Int.
J. Peptide Protein Res. 1988, 32, 161–166.
a) R. Matsueda, K. Aiba, Chem. Lett. 1978, 951–952; b) M.
Ueki, M. Honda, Y. Kazama, T. Katoh, Synthesis 1994, 21–
22; c) R. Matsueda, E. T. Kaiser, Heterocycles 1981, 15, 1089–
1092.
a) R. Matsueda, S. Higashida, R. J. Ridge, G. R. Matsueda,
Chem. Lett. 1982, 921–924; b) B. Wu, J. Chen, J. D. Warren,
G. Chen, Z. Hua, S. J. Danishefsky, Angew. Chem. Int. Ed.
2006, 45, 4116–4125; c) W. Tegge, W. Bautsch, R. Frank, J.
Pept. Sci. 2007, 13, 693–699.
N. Shimizu, F. Shibata, S. Imazu, Y. Tsuno, Chem. Lett. 1987,
1071–1074.
P. F. Smith, Curr. Opin. Invest. Drugs 2003, 4, 826–832.
a) H. Allgeier, C. Angst, G. Bold, R. Duthaler, R. Heckendorn,
A. Togni, Eur. Pat. Appl. EP 302826 A2, 1989; b) G. E. Fagg,
H.-R. Olpe, M. F. Pozza, J. Baud, M. Steinmann, M. Schmutz,
[8] R. O. Duthaler, Angew. Chem. Int. Ed. Engl. 1991, 30, 705–707.
[9] a) N. J. Lewis, R. L. Inloes, J. Hes, J. Med. Chem. 1978, 21,
1070–1073; b) D. S. Kemp, R. I. Carey, J. Org. Chem. 1989,
54, 3640–3646; c) G. A. R. Y. Suaifan, M. F. Mahon, T. Arafat,
M. D. Threadgill, Tetrahedron 2006, 62, 11245–11266; d) H.
Vorbrüggen, Synthesis 2008, 3739–3741; e) T. Shiraiwa, K. Ka-
taoka, S. Sakata, H. Kurokawa, Bull. Chem. Soc. Jpn. 1988,
61, 4158–4160.
[10] Using these conditions, large quantities of 6 could be obtained
reproducibly. It should be noted that this apparently smooth
transformation of cysteine, which has been described several
times before,[4,9] can be tricky. We experienced partial racemiza-
tion[9e] when starting with cysteine instead of its hydrochloride
3, and formation of a rather stable anhydride with the 4-carb-
oxylate was observed with an excess of (Boc)2O.[9c]
[25]
[26]
[27]
[28]
[11] H. E. White, A. A. Baum, D. E. Eitel, Org. Synth. 1968, 48,
102–105.
Eur. J. Org. Chem. 2011, 4667–4680
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4679