Journal of the American Chemical Society
Page 18 of 20
54, 8823-8827. (b) Bertuzzi, G.; Sinisi, A.; Caruana, L.; Mazzanti, A.;
Fochi, M.; Bernardi, L. Catalytic Enantioselective Addition of Indoles
to Activated N-Benzylpyridinium Salts: Nucleophilic
(17) (a) Harutyunyan, S. R.; López, F.; Browne, W. R.; Correa, A.;
Peña, D.; Badorrey, R.; Meetsma, A.; Minnaard, A. J.; Feringa, B. L.
On the Mechanism of the Copper-Catalyzed Enantioselective 1,4-
Addition of Grignard Reagents to α , β -Unsaturated Carbonyl
Compounds. J. Am. Chem. Soc. 2006, 128, 9103-9118. (b) Metzger,
A.; Bernhardt, S.; Manolikakes, G.; Knochel, P. MgCl2-Accelerated
Addition of Functionalized Organozinc Reagents to Aldehydes,
Ketones, and Carbon Dioxide. Angew. Chem. Int. Ed. 2010, 49, 4665-
4668.
1
2
3
4
5
6
7
8
Dearomatization of Pyridines with Unusual C-4 Regioselectivity. ACS
Catal. 2016, 6, 6473-6477. (c) Bertuzzi, G.; Sinisi, A.; Pecorari, D.;
Caruana, L.; Mazzanti, A.; Bernardi, L.; Fochi, M. Nucleophilic
Dearomatization of Pyridines under Enamine Catalysis: Regio-,
Diastereo-, and Enantioselective Addition of Aldehydes to Activated
N-Alkylpyridinium Salts. Org. Lett. 2017, 19, 834-837. (d) Flanigan,
D. M.; Rovis, T. Enantioselective N-Heterocyclic Carbene-Catalyzed
Nucleophilic Dearomatization of Alkyl Pyridiniums. Chem. Sci. 2017,
8, 6566-6569.
(18) See the SI for details.
(19) π-stacking interactions have been invoked as critical
stereocontrol elements in several other diastereoselective pyridinium
additions. See ref. 1c and examples therein.
9
(10) For examples of catalytic asymmetric 1,2-selective
dearomatization of activated substrates, see, e.g.: (a) Sun, Z.; Yu, S.;
Ding, Z.; Ma, D. Enantioselective Addition of Activated Terminal
Alkynes to 1-Acylpyridinium Salts Catalyzed by Cu−Bis(oxazoline)
Complexes. J. Am. Chem. Soc. 2007, 129, 9300-9301. (b) Black, D.
A.; Beveridge, R. E.; Arndtsen, B. A. Copper-Catalyzed Coupling of
Pyridines and Quinolines with Alkynes:ꢀ A One-Step, Asymmetric
Route to Functionalized Heterocycles. J. Org. Chem. 2008, 73, 1906-
1910. (c) Fernández-Ibáñez, M. A.; Maciá, B.; Pizzuti, M. G.;
Minnaard, A. J.; Feringa, B. L. Catalytic Enantioselective Addition of
Dialkylzinc Reagents to N-Acylpyridinium Salts. Angew. Chem. Int.
Ed. 2009, 48, 9339-9341. (d) Pappoppula, M.; Cardoso, F. S. P.;
Garrett, B. O.; Aponick, A. Enantioselective Copper-Catalyzed
Quinoline Alkynylation. Angew. Chem. Int. Ed. 2015, 54, 15202-
15206. (e) Lutz, J. P.; Chau, S. T.; Doyle, A. G. Nickel-Catalyzed
Enantioselective Arylation of Pyridine. Chem. Sci. 2016, 7, 4105-
4109. (f) Yu, S.; Sang, H. L.; Ge, S. Enantioselective Copper-
Catalyzed Alkylation of Quinoline N-Oxides with Vinylarenes.
Angew. Chem. Int. Ed. 2017, 56, 15896-15900. (g) Robinson, D. J.;
Spurlin, S. P.; Gorden, J. D.; Karimov, R. R. Enantioselective
Synthesis of Dihydropyridines Containing Quaternary Stereocenters
Through Dearomatization of Pyridinium Salts. ACS Catal. 2020, 10,
51-55.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(20) See, e.g., (a) Wang, Y-M.; Buchwald, S. L. Enantioselective
CuH-Catalyzed Hydroallylation of Vinylarenes. J. Am. Chem. Soc.
2016, 138, 5024-5027. (b) Gribble, M. W., Jr.; Pirnot, M. T.; Bandar,
J. S.; Liu, R. Y.; Buchwald, S. L. Asymmetric Copper Hydride-
Catalyzed Markovnikov Hydrosilylation of Vinylarenes and Vinyl
Heterocycles. J. Am. Chem. Soc., 2017, 139, 2192-2195. (c) Zhou, Y.;
Bandar, J. S.; Buchwald, S. L. Enantioselective CuH-Catalyzed
Hydroacylation Employing Unsaturated Carboxylic Acids as
Aldehyde Surrogates. J. Am. Chem. Soc. 2017, 139, 8126-8129.
(21) Bandar, J. S.; Pirnot, M. T.; Buchwald, S. L. Mechanistic
Studies Lead to Dramatically Improved Reaction Conditions for the
Cu-Catalyzed Asymmetric Hydroamination of Olefins. J. Am. Chem.
Soc. 2015, 137, 14812-14818.
(22) Xi, Y.; Hartwig, J. F. Mechanistic Studies of Copper-
Catalyzed Asymmetric Hydroboration of Alkenes. J. Am. Chem.
Soc. 2017, 139, 12758-12772.
(23)
Although
not
primarily
concerned
with
hydrofunctionalization, Hoveyda’s study on the stereoselectivity of
Cu-catalyzed olefin carboborylation is highly pertinent to this
discussion: Lee, J.; Radomkit, S.; Torker, S.; del Pozo, J.; Hoveyda,
A. H. Mechanism-Based Enhancement of Scope and
Enantioselectivity for Reactions Involving a Copper-Substituted
Stereogenic Carbon Centre. Nat. Chem. 2018, 10, 99-108.
(24) For a more rigorous treatment of the derivation of catalytic
rate laws for single cycles under steady-state conditions when there is
a MACS and a TLS, see Helfferich, F. G. Kinetics of Multistep
Reactions, 2nd Edition; Green, N. J. B., Ed.; Comprehensive Chemical
Kinetics 40; Elsevier: Amsterdam, 2004, pp 227-239.
(11) For recent work on nucleophilic dearomatization using
traceless activation with BF3 see (a) Wang, D.; Wang, Z.; Liu, Z.;
Huang, M.; Hu, J.; Yu, P. Strategic C–C Bond-Forming
Dearomatization of Pyridines and Quinolines. Org. Lett. 2019, 21,
4459-4463. (b) Wang, D.; Jiang, Y.; Dong, L.; Li. G.; Sun, B.;
Désaubry, L.; Yu, P. One-Pot Selective Saturation and
Functionalization of Heteroaromatics Leading to Dihydropyridines
and Dihydroquinolines. J. Org. Chem. 2020, 85, 5027-5037.
(25) Note that these pathways must have different equilibrium
constants in order to give the same equilibrium dr because they have
different molecularity. See the SI.
(12) For examples, see (a) Pirnot, M. T.; Wang, Y.-M.; Buchwald,
S. L. Copper Hydride Catalyzed Hydroamination of Alkenes and
Alkynes Angew. Chem. Int. Ed. 2016, 55, 48-57. (b) Wang, H.;
(26) These estimates were made using parameter sets that had been
optimized for quantitative accuracy. Quantitation of 9h using 19F
NMR was based on the ratio of the integral for 9h to that of internal
4-fluoroanisole, whereas quantitation of 9a and 9h using 31P NMR
was based on comparison of the phenethylcopper integrals to the total
31P integral. Although 31P-based estimates were generally somewhat
higher, the discrepancy was not mechanistically significant, and only
31P-based estimates were suitable for stereochemical analysis of the
phenethylcopper (as in Figure 5, F).
(27) For a more detailed discussion of the mechanistic basis for this
phenomenon, see the SI.
(28) The rate of epimerization is actually a first order function of
the fractional distance from equilibrium, but when the fractional
distance from equilibrium is very large (i.e., the dr is very high), the
rate is well approximated by the equation given.
(29) This equation is derived in the SI and specifically pertains to
an idealized reaction in which the major phenethylcopper
diastereomer is continuously regenerated with perfect kinetic
selectivity. This scenario well approximates the reactions under study
because the hydrocupration step has very high kinetic selectivity.
(30) In section 3, we demonstrate that a single CuL2 fragment is
present in the dearomative addition transition state. If the addition
mechanism were bimetallic, as initially thought, then the differences
in rate and selectivity observed when both enantiomers of Ph-BPE are
present could be attributed to differences in reactivity or selectivity
for competing homo- and hetero-chiral bimetallic pathways: the latter
Buchwald,
S.
L.
Copper-Catalyzed,
Enantioselective
Hydrofunctionalization of Alkenes. In Organic Reactions; Denmark,
S. E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2019; pp 121−205.
and refs. therein.
(13) (a) Grigg, R. D.; Van Hoveln, R.; Schomaker, J. M. Copper-
Catalyzed Recycling of Halogen Activating Groups via 1,3-Halogen
Migration. J. Am. Chem. Soc. 2012, 39, 16131-16134. (b) Van
Hoveln, R.; Hudson, B. M.; Wedler, H. B.; Bates, D. M.; Le Gros, G.;
Tantillo, D. J.; Schomaker, J. M. Mechanistic Studies of Copper(I)-
Catalyzed 1,3-Halogen Migration. J. Am. Chem. Soc. 2015, 137,
5346-5354.
(14) Dearomative allylation of quinoline by an imidoyl-Cu-ene can
be found in Smith, K. B.; Huang, Y.; Brown, M. K. Copper-Catalyzed
Heteroarylboration of 1,3-Dienes with 3-Bromopyridines: A cine
Substitution. Angew. Chem. Int. Ed. 2018, 57, 6146-6149.
(15) Yang, Y.; Perry, I. B; Buchwald, S. L. Copper-Catalyzed
Enantioselective Addition of Styrene-Derived Nucleophiles to Imines
Enabled by Ligand-Controlled Chemoselective Hydrocupration. J.
Am. Chem. Soc. 2016, 138, 9787-9790. The transition state model
shown in Figure 3, D is provided in the SI.
(16) For example, see Liu, R. Y.; Yang, Y.; Buchwald, S. L.
Regiodivergent and Diastereoselective CuH-Catalyzed Allylation of
Imines with Terminal Allenes. Angew. Chem. Int. Ed., 2016, 55,
14077-14080.
18
ACS Paragon Plus Environment