Chemistry - A European Journal
10.1002/chem.201604527
DOI: 10.1002/chem.201xxxxxx
+
•+
+
•+
species are quite different between Acr –Mes and Acr –Dur :
[9] S. Fukuzumi, K. Saito, K. Ohkubo, T. Khoury, Y. Kashiwagi, M. A.
Absalom, S. Gadde, F. D’Souza, Y. Araki, O. Ito, M. Crossley, Chem.
Commun. 2011, 47, 7980.
+
•+
+
the hfc value of Acr –Dur is 11.8 G, whereas those of Acr –
•
+
[65]
Mes is 0 G.
Such a drastic difference results from the
+
[10] a) T. Kojima, T. Honda, K. Ohkubo, M. Shiro, T. Kusukawa, T. Fukuda, N.
Kobayashi, S. Fukuzumi, S. Angew. Chem., Int. Ed. 2008, 47, 6712; b) S.
Fukuzumi, T. Honda, K. Ohkubo, T. Kojima, Dalton Trans. 2009, 3880; c)
T. Kojima, K. Hanabusa, K. Ohkubo, M. Shiro, S. Fukuzumi, Chem.–Eur. J.
disappearance in the unpaired spin at the ortho-position in Acr –
Mes (see the spin distributions in Figure 10). The large spin
distribution on 2- and 6-methyl groups of the orbital interaction
•
+
•
•
•+
between the Dur and Acr moieties of Acr –Dur is expected to
2
010, 16, 3646.
+
•+
the durene moiety of Acr –Dur
results from the σ*-π*
[11] S. Fukuzumi, In Functional Organic Materials (Eds.; T. J. J. Müller, U. H. F.
Bunz), Wiley-VCH, 2007, 465.
hyperconjugation. In such a case, the interaction between the
•
+
•
•
•+
[
12] H. Imahori, Y. Sekiguchi, Y. Kashiwagi, T. Sato, Y. Araki, O. Ito, H.
Yamada, S. Fukuzumi, Chem.–Eur. J. 2004, 10, 3184.
Dur and Acr moieties of Acr –Dur would be much larger than
•
+
•
•
•+
that between the Mes and Acr moieties of Acr –Mes , despite
the orthogonal orientation between the donor and acceptor
moieties in both cases, resulting in the fast back electron transfer
in the singlet ET state in competition with the intersystem
crossing to afford the long lived triplet ET state.
[
[
[
13] J.-R. Shen, Annu. Rev. Plant Biol. 2015, 66, 23.
14] A. Harriman, Angew. Chem., Int. Ed. 2004, 43, 4985.
15] a) R. A. Marcus, Angew. Chem., Int. Ed. Engl. 1993, 32, 1111; b) R. A.
Marcus, N. Sutin, Biochim. Biophys. Acta 1985, 811, 265.
16] S. Fukuzumi, K. Ohkubo, T. Suenobu, K. Kato, M. Fujitsuka, O. Ito, J. Am.
Chem. Soc. 2001, 123, 8459.
[
Conclusion
[17] S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko, H.
Lemmetyinen, J. Am. Chem. Soc. 2004, 126, 1600.
[
18] a) A. C. Benniston, K. J. Elliott, R. W. Harrington, W. Clegg, Eur. J. Org.
Chem. 2009, 253; b) A. C. Benniston, A. Harriman, P. Li, J. P. Rostron, H.
J. van Ramesdonk, M. M. Groeneveld, H. Zhang, J. W. Verhoeven, J. Am.
Chem. Soc. 2005, 127, 16054; c) A. C. Benniston, A. Harriman, P. Li, J. P.
Rostron. J. W. Verhoeven, Chem. Commun. 2005, 2701; d) A. C.
Benniston, A. Harriman. J. W. Verhoeven, Phys. Chem. Chem. Phys.
2008, 10, 5156.
In conclusion, we have obtained a bell-shaped driving force
dependence of rates of intramolecular photoinduced ET including
the BET rate constants in 9-substituted 10-methylacridinium ions
+
+
(
Acr –R). The ET states of Acr –R are extremely long-lived
except for R = An because of the small reorganization energy of
electron transfer and the high energy of the triplet ET sates which
are lower than the locally excited triplet states. In particular, the
[19] K. Ohkubo, H. Kotani, S. Fukuzumi, Chem. Commun. 2005, 4520.
+
quantum yield of the extremely long-lived ET state of Acr –Mes is
[20] a) S. Fukuzumi, K. Ohkubo, T. Suenobu, Acc. Chem. Res. 2014, 47,
+
1
455; b) S. Fukuzumi, K. Ohkubo, Chem. Sci. 2013, 4, 561.
the highest among Acr –R, being close to unity, because of weak
[
[
[
21] a) N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075; b) K. A.
Margrey, D. A. Nicewicz, Acc. Chem. Res. 2016, 49, 1997.
orbital interaction between the donor and acceptor moiety in the
+
ET state. This makes Acr –Mes the most efficient organic
22] a) N. A. Romero, K. A. Margrey, N. E. Tay, D. A. Nicewicz, Science 2015,
photocatalyst available for construction of energy conversion
systems and synthetic applications.
3
49, 1326; b) C. L. Cavanaugh, D. A. Nicewicz, Org. Lett. 2015, 17, 6082.
23] a) N. A. Romero, D. A. Nicewicz, J. Am. Chem. Soc. 2014, 136, 17024; b)
D. J. Wilger, J. M. Grandjean, T. Lammert, D. A. Nicewicz, Nat. Chem.
Acknowledgmentsꢀ
This work was supported by Grants-in-Aid (no. 16H02268 to S.F.,
2
014, 6, 720; c) T. M. Nguyen, N. Manohar, D. A. Nicewicz, Angew.
Chem., Int. Ed. 2014, 53, 6198; d) D. A. Nicewicz, D. S. Hamilton, Synlett
014, 25, 1191; e) A. J. Perkowski, D. A. Nicewicz, J. Am. Chem.
2
1
6K13964, 26620154 and 26288037 to K.O.) from the Ministry of
Soc. 2013, 135, 10334; f) T. M. Nguyen, D. A. Nicewicz, J. Am. Chem.
Soc. 2013, 135, 9588; g) D. J. Wilger, N. J. Gesmundo, D. A. Nicewicz,
Chem. Sci. 2013, 4, 3160; h) D. S. Hamilton, D. A. Nicewicz, J. Am. Chem.
Soc. 2012, 134, 18577; i) D. A. Nicewicz, T. M. Nguyen, ACS Catal.
Education, Culture, Sports, Science and Technology (MEXT);
SENTAN projects from JST, Japan (to S.F.).
Keywords: photoredox catalyst • charge separation • transient
2
014, 4, 355.
24] S. Fukuzumi, A. Ito, T. Suenobu, K. Ohkubo, J. Phys. Chem. C 2014, 118,
4188.
absorption spectroscopy • donor-acceptor system
[
[
2
25] a) N. Xu, P. Li, Z. Xie, L. Wang, Chem.–Eur. J. 2016, 22, 2236; b) A. J.
Perkowski, C. L. Cruz, D. A. Nicewicz, J. Am. Chem. Soc. 2015, 137,
[
[
1] The Photosynthetic Reaction Center, J. Deisenhofer, J. R. Norris, Eds.,
Academic Press, San Diego, 1993.
1
5684; c) P. D. Morse, D. A. Nicewicz, Chem. Sci. 2015, 6, 270; d) Y. Gu,
K. Ellis-Guardiola, P. Srivastava, J. C. Lewis, ChemBioChem 2015, 16,
880.
2] a) Anoxygenic Photosynthetic Bacteria (Eds.: R. E. Blankenship, M. T.
Madigan, C. E. Bauer), Kluwer Academic Publisher, Dordecht, 1995; b)
Molecular Level Artificial Photosynthetic Materials, G. J. Meyer, Wiley,
New York, 1997.
1
[
26] a) C. Cassani, G. Bergonzini, C.-J. Wallentin, Org. Lett. 2014, 16, 4228; b)
T. Chinzei, K. Miyazawa, Y. Yasu, T. Koike, M. Akita, RSC Adv. 2015, 5,
[
3] a) R. A. Wheeler, Introduction to the Molecular Bioenergetics of Electron,
Proton, and Energy Transfer: ACS Symposium Series 2004, 883, 1; b) W.
Leibl, P. Mathis, Electron Transfer in Photosynthesis. Series on
Photoconversion of Solar Energy, 2004, 2, 117.
2
4
3
1297; c) M. A. Zeller, M. Riener, D. A. Nicewicz, Org. Lett. 2014, 16,
810; d) J. Grandjean, D. A. Nicewicz, Angew. Chem., Int. Ed. 2013, 52,
967.
[
[
27] T. Hering, A. U. Mayer, B. König, J. Org. Chem. 2016, 81, 6927.
[
[
4] a) B. D. Sherman, M. D. Vaughn, J. J. Bergkamp, D. Gust, A. L. Moore, T.
A. Moore, Photosynth. Res. 2014, 120, 5; b) D. Gust, T. A. Moore, A. L.
Moore, Acc. Chem. Res. 2009, 42, 1890.
28] T. Nakagawa, K. Okamoto, H. Hanada, R. Katoh, Opt. Lett. 2016, 41,
1
498.
[
[
[
29] W. L. F. Armarego, C. L. L. Chai, Purification of Laboratory Chemicals, 6th
ed., Butterworth-Heinemann, Amsterdam, 2009.
5] a) M. Rudolf, S. V. Kirner, D. M. Guldi, Chem. Soc. Rev. 2016, 45, 612; b)
G. Bottari, G. de la Torre, D. M. Guldi, T. Torres, Chem. Rev. 2010, 110,
30] S. Fukuzumi, S. Koumitsu, K. Hironaka, T. Tanaka, J. Am. Chem. Soc.
6
768; c) V. Sgobba, D. M. Guldi, Chem. Soc. Rev. 2009, 38, 165.
1
987, 109, 305.
[
[
[
6] M. R. Wasielewski, Acc. Chem. Res. 2009, 42, 1910.
7] S. Fukuzumi, Phys. Chem. Chem. Phys. 2008, 10, 2283.
8] a) F. D’Souza, O. Ito, Chem. Commun. 2009, 4913; b) F. D’Souza, O. Ito,
Coord. Chem. Rev. 2005, 249, 1410; c) M. E. El-Khouly, S. Fukuzumi, F.
D'Souza, ChemPhysChem 2014, 15, 30.
31] a) S. Fukuzumi, T. Suenobu, M. Patz, T. Hirasaka, S. Itoh, M. Fujitsuka, O.
Ito, J. Am. Chem. Soc. 1998, 120, 8060; b) M. Patz, Y. Kuwahara, T.
Suenobu, S. Fukuzumi, Chem. Lett. 1997, 567.
[
32] S. Fukuzumi, H. Imahori, H. Yamada, M. E. El-Khouly, M. Fujitsuka, O. Ito,
1
1
This article is protected by copyright. All rights reserved.