Full Papers
doi.org/10.1002/ejoc.202100848
IR (neat): v˜=2922 (s), 2852 (s), 1738 (m), 1672 (m), 1591 (m), 1459
[15] H. Ohara, H. Kiyokane, T. Itoh, Tetrahedron Lett. 2002, 43, 3041–3044.
[
[
[
16] M. Potowski, M. Schürmann, H. Preut, A. P. Antonchick, H. Waldmann,
Nat. Chem. Biol. 2012, 8, 428–430.
17] M. D. Rozeboom, I. M. Tegmo-Larsson, K. N. Houk, J. Org. Chem. 1981,
(
1
m), 1379 (m), 1324 (m), 1282 (s), 1212 (m), 1144 (m), 1067 (m),
003 (s), 968 (m), 923 (m), 797 (m), 715 (s), 614 (w) cm . H NMR
À 1
1
(
CDCl , 400 MHz): δ=4.00 (s, 3H, 12-OCH ), 4.10 (s, 3H, 2-OCH ), 5.01
3
3
3
46, 2338–2345.
(
s, 2H, H2), 7.85–7.88 (m, 2H, H7, H8), 8.41–8.44 (m, 2H, H6, H9), 9.08
s, 2H, H4, H11) ppm. C NMR (CDCl , 100 MHz): δ 57.5 (CH , C2),
18] J. Breton, E. Nabedryk, Biochimica Biophysica Acta 1996, 1275, 84–90.
13
(
3
2
[19] T. S. Kashey, D. D. Luu, J. C. Cowgill, P. L. Baker, K. E. Redding, Photo-
synth. Res. 2018, 138, 1–9.
6
2.2 (CH , 3-OCH ), 64.5 (CH , 12-OCH ), 124.3 (CH, C4), 124.7 (CH,
3 3 3 3
C11), 127.5 (CH, C6), 127.5 (CH, C9), 129.1 (C, C2a), 129.5 (C, C12a),
30.2 (C, C10a), 130.6 (C, C3a), 131.8 (C, C11a), 133.4 (C, C4a), 134.2
CH, C7), 134.2 (CH, C8), 134.5 (C, C5a), 134.5 (C, C9a), 152.3 (C, C3),
[20] W. Lubitz, Pure Appl. Chem. 2003, 75, 1021–1030.
[21] C. Cleren, L. Yang, B. Lorenzo, N. Y. Calingasan, A. Schomer, A. Sireci,
E. J. Wille, M. F. Beal, J. Neurochem. 2008, 104, 1613–1621.
1
(
[
22] S. Pepe, S. F. Marasco, S. J. Haas, F. L. Sheeran, H. Krum, F. L. Rosenfeldt,
1
52.8 (C, C12), 182.1 (C, C5), 182.87 (C, C10), 182.94 (C, C1) ppm.
À 1
Mitochondrion 2007, 7, S154-S167.
[23] R. Nageswara Rao, M. V. N. K. Talluri, D. D. Shinde, J. Pharm. Biomed.
Anal. 2008, 47, 230–237.
[24] T. C. Rodick, D. R. Seibels, J. R. Babu, K. W. Huggins, G. Ren, S. T.
Mathews, Nutr. Diet. Suppl. 2018, 10, 1–11.
[25] O. Benzakour, Thromb. Haemostasis 2008, 100, 527–529.
UV/Vis (THF): λ (ɛ)=427 (23.2), 305 (83.0), 297 (81.5) nm (mM
cm ). Fluorescence (THF):
max
À 1
λex=267 nm; λem=415, 602 nm. MS
+
+
(
70 eV): m/z (%) 360 (3) [M+2] , 347 (9) [M+2À CH ] , 329 (81) [M-
3
OCH ]. HRMS (ESI): Calcd. for C H O 360.0998, found 360.0963 [M
3
22 14
+
+
+
2] ; calcd. for C H O [MÀ CH =O] 329.0814, found 329.0788.
21
13
4
2
[
26] I. Cirilli, P. Orlando, F. Marcheggiani, P. V. Dludla, S. Silvestri, E. Damiani,
L. Tiano, Antioxidants 2020, 9, 1008.
[
27] M. Fusaro, G. Iervasi, M. Fusaro, M. C. Mereu, A. Aghi, M. Gallieni, Clin.
Cases Miner. Bone Metab. 2017, 14, 200–206.
Acknowledgements
[
[
28] M. K. Shea, S. L. Booth, Curr. Dev. Nutr. 2019, 3, nzz077.
29] R. Wallin, L. Schurgers, N. Wajih, Thromb. Res. 2008, 122, 411–417.
Both Amr M. Abdelmoniem and Ismail A. Abdelhamid acknowl-
edge the Alexander von Humboldt Foundation for a Georg Forster
and an Alexander von Humboldt research fellowship, respectively.
We thank Mr. Patrick Bessel, M. Sc., and Mr. Pascal Rusch, M. Sc.,
Institut für Physikalische Chemie und Elektrochemie, Leibniz
Universität Hannover, for their help in measuring UV and
fluorescence spectra, respectively. We are indebted to Prof. Dr.
Andreas Pich, Medizinische Hochschule Hannover, for performing
the MALDI measurement of 40. Open Access funding enabled and
organized by Projekt DEAL.
[30] A. Abraham, A. J. Kattoor, T. Saldeen, J. L. Mehta, Crit. Rev. Food Sci.
Nutr.v 2019, 59, 2831–2838.
[
[
31] P. Munoz, S. Munne-Bosch, Trends Plant Sci. 2019, 24, 1040–1051.
32] L. Zheng, J. Jin, L. Shi, J. Huang, M. Chang, X. Wang, H. Zhang, Q. Jin,
Crit. Rev. Food Sci. Nutr. 2020, 60, 3916–3930.
[33] S. Kandhasamy, N. Arthi, R. P. Arun, R. S. Verma, Mater. Sci. Eng. C 2019,
02, 773–787.
34] K. Zhang, D. Chen, K. Ma, X. Wu, H. Hao, S. Jiang, J. Med. Chem. 2018,
1, 6983–7003.
1
[
6
[35] L. Acuna, S. Hamadat, N. S. Corbalan, F. Gonzalez-Lizarraga, M.
dos Santos-Pereira, J. Rocca, J. S. Diaz, E. Del-Bel, D. Papy-Garcia, R. N.
Chehin, P. P. Michel, R. Raisman-Vozari, Cells 2019, 8, 776.
[
36] A. G. Granja, F. Carrillo-Salinas, A. Pagani, M. Gomez-Canas, R. Negri, C.
Navarrete, M. Mecha, L. Mestre, B. L. Fiebich, I. Cantarero, M. A.
Calzado, M. L. Bellido, J. Fernandez-Ruiz, G. Appendino, C. Guaza, E.
Munoz, J. Neuroimmune Pharmacol. 2012, 7, 1002–1016.
Conflict of Interest
[
37] K. Kobayashi, S. Nishiumi, M. Nishida, M. Hirai, T. Azuma, H. Yoshida, Y.
Mizushina, M. Yoshida, Med. Chem. 2011, 7, 37–44.
[
38] J. Campanini-Salinas, J. Andrades-Lagos, G. G. Rocha, D. Choquesillo-
Lazarte, S. B. Dragnic, M. Faundez, P. Alarcon, F. Silva, R. Vidal, E. Salas-
Huenuleo, M. Kogan, J. Mella, G. R. Gajardo, D. Vasquez-Velasquez,
Molecules 2018, 23, 1776/1771-1776/1719.
The authors declare no conflict of interest.
Keywords: Benzocyclobutenes · Bidirectional acene synthesis ·
Cycloaddition · Photophysical properties · Quinones
[
39] G. Carr, E. R. Derbyshire, E. Caldera, C. R. Currie, J. Clardy, J. Nat. Prod.
2
012, 75, 1806–1809.
[
40] M. Iorio, J. Cruz, M. Simone, A. Bernasconi, C. Brunati, M. Sosio, S.
Donadio, S. I. Maffioli, J. Nat. Prod. 2017, 80, 819–827.
[
[
41] I. Sutradhar, M. H. Zaman, J. Pharm. Biomed. Anal. 2021, 197, 113941.
42] T. B. Gontijo, R. P. de Freitas, F. S. Emery, L. F. Pedrosa, J. B. Vieira Neto,
B. C. Cavalcanti, C. Pessoa, A. King, F. de Moliner, M. Vendrell, E. N.
da Silva Jr., Biochem. Med. Chem. Lett. 2017, 27, 4446–4456.
[
[
[
[
[
[
1] O. Diels, K. Alder, Justus Liebigs Ann. Chem. 1928, 460, 98–122.
2] O. Diels, K. Alder, P. Pries, Ber. Dtsch. Chem. Ges. 1929, 62B, 2081–2087.
3] M. C. Kloetzel, Org. React. 1948, 4, 1–59.
4] H. L. Holmes, Org. React. 1948, 4, 60–173.
5] D. Boger, S. Weinreb, Vol. 47, 1st ed., 1987.
[
43] J.-J. Lu, J.-L. Bao, G.-S. Wu, W.-S. Xu, M.-Q. Huang, X.-P. Chen, Y.-T.
Wang, Anti-Cancer Agents Med. Chem. 2013, 13, 456–463.
44] P. Morales, D. Vara, M. Goméz-Cañas, M. C. Zúñiga, C. Olea-Azar, P.
Goya, J. Fernández-Ruiz, I. Díaz-Laviada, N. Jagerovic, Eur. J. Med.
Chem. 2013, 70, 111–119.
[
6] J. Sauer, Angew. Chem. 1966, 78, 233–252; Angew. Chem. Int. Ed. 1966,
5
, 211–230.
7] J. Sauer, Angew. Chem. 1967, 79, 76–94; Angew. Chem. Int. Ed. 1967, 6,
6–33.
[
[
1
[45] Y. Wang, P. Pigeon, S. Top, J. Sanz Garcia, C. Troufflard, I. Ciofini, M. J.
McGlinchey, G. Jaouen, Angew. Chem. 2019, 131, 8509–8513; Angew.
Chem. Int. Ed. 2019, 58, 8421–8425.
[46] M. B. Thomas, Y. Hu, W. Shan, K. M. Kadish, H. Wang, F. D’Souza, J.
Phys. Chem. C 2019, 123, 22066–22073.
[47] R. Einholz, T. Fang, R. Berger, P. Grueninger, A. Frueh, T. Chasse, R. F.
Fink, H. F. Bettinger, J. Am. Chem. Soc. 2017, 139, 4435–4442.
[48] E. Kumarasamy, S. N. Sanders, A. B. Pun, S. A. Vaselabadi, J. Z. Low,
M. Y. Sfeir, M. L. Steigerwald, G. E. Stein, L. M. Campos, Macromolecules
2016, 49, 1279–1285.
[49] I. Kaur, W. Jia, R. P. Kopreski, S. Selvarasah, M. R. Dokmeci, C. Pramanik,
N. E. McGruer, G. P. Miller, J. Am. Chem. Soc. 2008, 130, 16274–16286.
[50] T. J. Carey, J. L. Snyder, E. G. Miller, T. Sammakia, N. H. Damrauer, J. Org.
Chem. 2017, 82, 4866–4874.
8] Q. Chen, J. Gao, C. Jamieson, J. Liu, M. Ohashi, J. Bai, D. Yan, B. Liu, Y.
Che, Y. Wang, K. N. Houk, Y. Hu, J. Am. Chem. Soc. 2019, 141, 14052–
1
4056.
[
9] L. Gao, C. Su, X. Du, R. Wang, S. Chen, Y. Zhou, C. Liu, X. Liu, R. Tian, L.
Zhang, K. Xie, S. Chen, Q. Guo, L. Guo, Y. Hano, M. Shimazaki, A.
Minami, H. Oikawa, N. Huang, K. N. Houk, L. Huang, J. Dai, X. Lei, Nat.
Chem. 2020, 12, 620–628.
[
[
10] M. Juhl, D. Tanner, Chem. Soc. Rev. 2009, 38, 2983–2992.
11] K. C. Nicolaou, S. A. Snyder, T. Montagnon, G. Vassilikogiannakis,
Angew. Chem. 2002, 114, 1742–1773; Angew. Chem. Int. Ed. 2002, 41,
1
668–1698.
[
12] S. P. Ross, T. R. Hoye, Nat. Chem. 2017, 9, 523–530.
13] S. Kotha, N. N. Rao, O. Ravikumar, G. Sreevani, Tetrahedron Lett. 2017,
[
5
8, 1283–1286.
[51] J. D. Cook, T. J. Carey, N. H. Damrauer, J. Phys. Chem. A 2016, 120,
4473–4481.
[
14] H. Lv, L. You, S. Ye, Adv. Synth. Catal. 2009, 351, 2822–2826.
Eur. J. Org. Chem. 2021, 1–16
14
© 2021 The Authors. European Journal of Organic Chemistry published
by Wiley-VCH GmbH
��
These are not the final page numbers!