Organic Letters
3) were not obtained from the reaction with trimethylsilyla-
Letter
2
(7) Hay, D. A.; Rogers, C. M.; Fedorov, O.; Tallant, C.; Martin, S.;
Monteiro, O. P.; Muller, S.; Knapp, S.; Schofield, C. J.; Brennan, P. E.
MedChemComm 2015, 6, 1381−1386.
8) Zhu, C.; Zhao, P.; Qiao, Y.; Xiao, K.; Song, C.; Chang, J. J. Org.
Chem. 2017, 82, 7045−7049.
9) Meazza, M.; Leth, L. A.; Erickson, J. D.; Jørgensen, K. A. Chem. -
Eur. J. 2017, 23, 7905−7909.
10) Erguven, H.; Leitch, D. C.; Keyzer, E. N.; Arndtsen, B. A. Angew.
cetylene or phenylacetylene.
Disubstituted alkynes such as dimethyl acetylenedicarbox-
ylate or ethyl 3-trifluoromethylpropiolate gave the correspond-
ing indolizines 24 in 60% yield and 25 in 65% yield. Alternative
benzyl diazoacetate ester performed equally well in the reaction
with ethyl propiolate to produce indolizine 26 in 64% yield.
In conclusion, a general and expedient one-pot synthesis of
indolizines has been developed. The reaction uses commercially
available pyridine, alkyne and diazo ester precursors, while the
catalyst is derived from cheap and abundant iron. Significantly,
the iron-catalyzed route via pyridinium ylides is compatible
with electrophilic alkynes by outcompeting potentially
significant background reactions.
(
(
(
Chem., Int. Ed. 2017, 56, 6078−6082.
(11) Review: Sadowski, B.; Klajn, J.; Gryko, D. T. Org. Biomol. Chem.
2016, 14, 7804−7828.
(12) Padwa, A.; Austin, D. J.; Precedo, L.; Zhi, L. J. Org. Chem. 1993,
8, 1144−1150.
13) Chen, R.; Zhao, Y.; Sun, H.; Shao, Y.; Xu, Y.; Ma, M.; Ma, L.;
Wan, X. J. Org. Chem. 2017, 82, 9291−9304.
14) Day, J.; McKeever-Abbas, B.; Dowden, J. Angew. Chem., Int. Ed.
5
(
(
2
016, 55, 5809−5813.
ASSOCIATED CONTENT
■
(15) Allgaeuer, D. S.; Mayer, P.; Mayr, H. J. Am. Chem. Soc. 2013,
135, 15216−15224.
(
(
Chem. 2009, 11, 156−159.
(
(
*
S
Supporting Information
20
17) Vuluga, D.; Legros, J.; Crousse, B.; Bonnet-Delpon, D. Green
18) Acheson, R. M.; Taylor, G. A. J. Chem. Soc. 1960, 1691−1701.
19) Sundberg, R. J.; Hamilton, G.; Trindle, C. J. Org. Chem. 1986,
imental and compound characterization data (PDF)
5
1, 3672−3679.
21) Matsumoto, K.; Ikemi, Y.; Konishi, H.; Shi, X.; Uchida, T.
Heterocycles 1988, 27, 2557−2562.
(22) Jedinak, L.; Zatopkova, R.; Zeman
Cankar, P. J. Org. Chem. 2017, 82, 157−169.
23) Gorringe, A. M.; Lloyd, D.; Wasson, F. I.; Marshall, D. R.;
Duffield, P. A. J. Chem. Soc. C 1969, 1449−1456.
AUTHOR INFORMATION
■
*
(
̌
́ ́ ́
kova, H.; Sustkova, A.;
́
́
́
̌
ORCID
(
Author Contributions
All authors have given approval to the final version of the
manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Support from the EPSRC Centre for Doctoral Training in
Sustainable Chemistry (Grant EP/L015633/1) and the EPSRC
(EP/J021008/1) is acknowledged.
REFERENCES
■
(
1) Huckaba, A. J.; Yella, A.; Brogdon, P.; Scott Murphy, J.;
Nazeeruddin, M. K.; Gratzel, M.; Delcamp, J. H. Chem. Commun.
016, 52, 8424−8427.
2) Huckaba, A. J.; Yella, A.; McNamara, L. E.; Steen, A. E.; Murphy,
J. S.; Carpenter, C. A.; Puneky, G. D.; Hammer, N. I.; Nazeeruddin, M.
K.; Gratzel, M.; Delcamp, J. H. Chem. - Eur. J. 2016, 22, 15536−15542.
3) Huckaba, A. J.; Giordano, F.; McNamara, L. E.; Dreux, K. M.;
Hammer, N. I.; Tschumper, G. S.; Zakeeruddin, S. M.; Gratzel, M.;
Nazeeruddin, M. K.; Delcamp, J. H. Adv. Energy Mater. 2015, 5,
401629.
4) Choi, E. J.; Kim, E.; Lee, Y.; Jo, A.; Park, S. B. Angew. Chem., Int.
Ed. 2014, 53, 1346−1350.
5) Song, Y. R.; Lim, C. W.; Kim, T. W. Luminescence 2016, 31, 364−
71.
6) Chen, P.; Chaikuad, A.; Bamborough, P.; Bantscheff, M.;
̈
2
(
̈
(
̈
1
(
(
3
(
Bountra, C.; Chung, C.-w.; Fedorov, O.; Grandi, P.; Jung, D.; Lesniak,
R.; Lindon, M.; Mueller, S.; Philpott, M.; Prinjha, R.; Rogers, C.;
Selenski, C.; Tallant, C.; Werner, T.; Willson, T. M.; Knapp, S.;
Drewry, D. H. J. Med. Chem. 2016, 59, 1410−1424.
D
Org. Lett. XXXX, XXX, XXX−XXX