Chemistry & Biology
Ribocation Capture in Human PNP
Ebrahimi, M., Rossi, P., Rogers, C., and Harbison, G.S. (2001). Dependence of
13C NMR chemical shifts on conformations of rna nucleosides and nucleo-
tides. J. Magn. Reson. 150, 1–9.
Nunez, S., Wing, C., Antoniou, D., Schramm, V.L., and Schwartz, S.D. (2006).
Insight into catalytically relevant correlated motions in human purine nucleo-
side phosphorylase. J. Phys. Chem. A 110, 463–472.
Pfrogner, N. (1967a). Adenosine deaminase from calf spleen. I. Purificiation.
Fedorov, A., Shi, W., Kicska, G., Fedorov, E., Tyler, P.C., Furneaux, R.H., Han-
son, J.C., Gainsford, G.J., Larese, J.Z., et al. (2001). Transition state structure
of purine nucleoside phosphorylase and principles of atomic motion in enzy-
matic catalysis. Biochemistry 40, 853–860.
Arch. Biochem. Biophys. 119, 141–146.
Pfrogner, N. (1967b). Adenosine deaminase from calf spleen. II. Chemical and
enzymological properties. Arch. Biochem. Biophys. 119, 147–154.
Ghanem, M., Li, L., Wing, C., and Schramm, V.L. (2008a). Altered thermody-
namics from remote mutations altering human toward bovine purine nucleo-
side phosphorylase. Biochemistry 47, 2559–2564.
Richard, J.P., Huber, R.E., Heo, C., Amyes, T.L., and Lin, S. (1996). Structure-
reactivity relationships for beta-galactosidase (Escherichia coli, lac Z). 4.
Mechanism for reaction of nucleophiles with the galactosyl-enzyme intermedi-
ates of E461G and E461Q beta-galactosidases. Biochemistry 35, 12387–
12401.
Ghanem, M., Saen-oon, S., Zhadin, N., Wing, C., Cahill, S.M., Schwartz, S.D.,
Callender, R., and Schramm, V.L. (2008b). Tryptophan-free human PNP
reveals catalytic site interactions. Biochemistry 47, 3202–3215.
Rinaldo-Matthis, A., Murkin, A.S., Ramagopal, U.A., Clinch, K., Mee, S.P.,
Evans, G.B., Tyler, P.C., Furneaux, R.H., Almo, S.C., et al. (2008). L-Enantio-
mers of transition state analogue inhibitors bound to human purine nucleoside
phosphorylase. J. Am. Chem. Soc. 130, 842–844.
Ghanem, M., Zhadin, N., Callender, R., and Schramm, V.L. (2009). Loop-tryp-
tophan human PNP reveals submillisecond protein dynamics. Biochemistry
48, 3568–3668.
Ryu, K.-S., Kim, C., Park, C., and Choi, B.-S. (2004). NMR analysis of enzyme-
catalyzed and free-equilibrium mutarotation kinetics of monosaccharides.
J. Am. Chem. Soc. 126, 9180–9181.
Hrovat, D.A., Fang, S., Borden, W.T., and Carpenter, B.K. (1997). Investigation
of cyclopropane stereomutation by quasiclassical trajectories on an analytical
potential energy surface. J. Am. Chem. Soc. 119, 5253–5254.
Saen-Oon, S., Ghanem, M., Schramm, V.L., and Schwartz, S.D. (2008a).
Remote mutations and active site dynamics correlate with catalytic properties
of purine nucleoside phosphorylase. Biophys. J. 94, 4078–4088.
Huang, M.C., Montgomery, J.A., Thorpe, M.C., Stewart, E.L., Secrist, J.A., 3rd,
and Blakley, R.L. (1983). Formation of 3-(20-deoxyribofuranosyl) and 9-(20-de-
oxyribofuranosyl) nucleosides of 8-substituted purines by nucleoside deoxyri-
bosyltransferase. Arch. Biochem. Biophys. 222, 133–144.
Saen-Oon, S., Quaytman-Machleder, S., Schramm, V.L., and Schwartz, S.D.
(2008b). Atomic detail of chemical transformation at the transition state of an
enzymatic reaction. Proc. Natl. Acad. Sci. USA 105, 16543–16548.
Kenneth, N., Drew, J.Z., Bondo, G., Bose, B., and Serianni, A.S. (1998).
13C-labeled aldopentoses: detection and quantitation of cyclic and acyclic
forms by heteronuclear 1D and 2D NMR spectroscopy. Carbohydr. Res.
307, 199–209.
Schramm, V.L. (2005). Enzymatic transition states: thermodynamics,
dynamics and analogue design. Arch. Biochem. Biophys. 433, 13–26.
Schramm, V.L., and Baker, D.C. (1985). Spontaneous epimerization of (S)-de-
oxycoformycin and interaction of (R)-deoxycoformycin, (S)-deoxycoformycin,
and 8-ketodeoxycoformycin with adenosine deaminase. Biochemistry 24,
641–646.
Kim, B.K., Cha, S., and Parks, R.E., Jr. (1968). Purine nucleoside phosphory-
lase from human erythroyctes. II. Kinetic analysis and substrate-binding
studies. J. Biol. Chem. 243, 1771–1776.
Kline, P.C., and Schramm, V.L. (1992). Purine nucleoside phosphorylase. Ino-
sine hydrolysis, tight binding of the hypoxanthine intermediate, and third-the-
sites reactivity. Biochemistry 31, 5964–5973.
Shi, W., Ting, L.M., Kicska, G.A., Lewandowicz, A., Tyler, P.C., Evans, G.B.,
Furneaux, R.H., Kim, K., Almo, S.C., et al. (2004). Plasmodium falciparum
purine nucleoside phosphorylase: crystal structures, Immucillin inhibitors,
and dual catalytic function. J. Biol. Chem. 279, 18103–18106.
Kline, P.C., and Schramm, V.L. (1993). Purine nucleoside phosphorylase.
Catalytic mechanism and transition-state analysis of the arsenolysis reaction.
Biochemistry 32, 13212–13219.
Smar, M., Short, S.A., and Wolfenden, R. (1991). Lyase activity of nucleoside
2-deoxyribosyltransferase: transient generation of ribal and its use in the
synthesis of 20-deoxynucleosides. Biochemistry 30, 7908–7912.
Kline, P.C., and Schramm, V.L. (1995). Pre-steady-state transition-state anal-
ysis of the hydrolytic reaction catalyzed by purine nucleoside phosphorylase.
Biochemistry 34, 1153–1162.
Steenkamp, D.J. (1991). The purine-2-deoxyribonucleosidase from Crithidia
luciliae. Purification and trans-N-deoxyribosylase activity. Eur. J. Biochem.
197, 431–439.
Koellner, G., Luic, M., Shugar, D., Saenger, W., and Bzowska, A. (1997).
Crystal structure of calf spleen purine nucleoside phosphorylase in a complex
with hypoxanthine at 2.15 A resolution. J. Mol. Biol. 265, 202–216.
Stoeckler, J.D., Agarwal, R.P., Agarwal, K.C., and Parks, R.E., Jr. (1978).
Purine nucleoside phosphorylase from human erythrocytes. Methods Enzy-
mol. 51, 530–538.
Lehikoinen, P.K., Sinnott, M.L., and Krenitsky, T.A. (1989). Investigation of
a-deuterium kinetic isotope effects on the purine nucleoside phosphorylase
reaction by the equilibrium-perturbation technique. Biochem. J. 257, 355–359.
Stoeckler, J.D., Cambor, C., and Parks, R.E., Jr. (1980). Human erythrocytic
purine nucleoside phosphorylase: reaction with sugar-modified nucleoside
substrates. Biochemistry 19, 102–107.
Lewandowicz, A., and Schramm, V.L. (2004). Transition state analysis for
human and Plasmodium falciparum purine nucleoside phosphorylases.
Biochemistry 43, 1458–1468.
Teijeira, M., Santana, L., and Uriarte, E. (1997). Assignment of the 13C NMR
spectra of some adenine, hypoxanthine and guanine carbonucleosides.
Magn. Reson. Chem. 35, 806–807.
Lewandowicz, A., Shi, W., Evans, G.B., Tyler, P.C., Furneaux, R.H., Basso,
L.A., Santos, D.S., Almo, S.C., and Schramm, V.L. (2003). Over-the-barrier
transition state analogues and crystal structure with Mycobacterium tubercu-
losis purine nucleoside phosphorylase. Biochemistry 42, 6057–6066.
Tindall, C.G., Jr., Robins, R.K., Tolman, R.L., and Hutzenlaub, W. (1972).
Directed glycosylation of 8-bromoadenine. Synthesis and reactions of
8-substituted 3-glycosyladenine derivatives. J. Org. Chem. 37, 3985–3989.
Montgomery, J.A., and Thomas, H.J. (1969). Ribosyl derivatives of hypoxan-
Wang, J.H. (1951). Self-diffusion and structure of liquid water. II. Measurement
of self-diffusion of liquid water with O18 as tracer. J. Am. Chem. Soc. 73, 4181–
4183.
thine. J. Org. Chem. 34, 2646–2650.
Murkin, A.S., Birck, M.R., Rinaldo-Matthis, A., Shi, W., Taylor, E.A., Almo, S.C.,
and Schramm, V.L. (2007). Neighboring group participation in the transition
state of human purine nucleoside phosphorylase. Biochemistry 46, 5038–
5049.
Wolfenden, R., Sharpless, T.K., Ragade, I.S., and Leonard, N.J. (1966). Enzy-
matic and chemical deamination of 3-(b-D-ribofuranosyl)adenine. J. Am.
Chem. Soc. 88, 185–186.
Chemistry & Biology 16, 971–979, September 25, 2009 ª2009 Elsevier Ltd All rights reserved 979