Published on Web 09/30/2005
Electroactive Supramolecular Self-Assembled Fibers
Comprised of Doped Tetrathiafulvalene-Based Gelators
Tetsu Kitamura,† Suguru Nakaso,† Norihiro Mizoshita,† Yusuke Tochigi,†
Takeshi Shimomura,‡ Masaya Moriyama,† Kohzo Ito,‡ and Takashi Kato*,†
Contribution from the Department of Chemistry and Biotechnology, School of Engineering, The
UniVersity of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan, and Graduate School of
Frontier Sciences, The UniVersity of Tokyo, Kashiwanoha, Kashiwa-shi, Chiba 277-8561, Japan
Received May 28, 2005; Revised Manuscript Received August 23, 2005; E-mail: kato@chiral.t.u-tokyo.ac.jp
Abstract: New electroactive supramolecular fibers have been formed by self-assembly of the derivatives
of tetrathiafulvalene (TTF) in liquid crystals. These derivatives are designed and prepared by introducing
the TTF moiety to the scaffold derived from amino acids such as L-isoleucine whose derivatives function
as organogelators. These TTF-based gelators form stable fibrous aggregates in liquid crystals. These fibers
are the first example of hydrogen-bonded one-dimensional aggregates having electroactive moieties whose
electrical conductivities were measured after doping. Their electronic states have also been characterized
by spectroscopic methods. Unidirectionally aligned fibers are formed in the oriented liquid crystal solvents
on the rubbed polyimide surface for further functionalization of the fibers.
Introduction
having tetrathiafulvalene (TTF) moieties. Intensive studies have
focused on TTF for the preparation of conductive materials in
Supramolecular self-assembly is one of the promising ap-
proaches for the fabrication of molecular materials.1 For
example, molecular self-assembly from solution states often
leads to the formation of one-dimensional (1D) solid fibers.2
This process has attracted attention because 1D fibrous solids,
ranging from the submicrometer to nanometer scale, are easily
obtained by simple self-assembly through noncovalent interac-
tions such as hydrogen bonding, ionic interactions, and π-π
stacking in a variety of solvents.2 The network formation of
the fibers in the solvents leads to the preparation of physical
gels. The molecules that drive physical gelation are called
gelators.2 If functional moieties are introduced into each
component of the gelators, new functional 1D objects would
be obtained. Our new approach is to obtain electroactive 1D
fibers through molecular self-assembly processes of gelators
bulk3 and thin film states.4 High conductivities can be expected
for TTF-based materials through the formation of charge-transfer
(CT) complexes with electron acceptors such as tetracyano-p-
quinodimethane (TCNQ) and iodine.3 Molecular switches
incorporating TTF moieties have also been prepared.5
For self-assembled fibers incorporating the TTF moieties, two
examples of bis-arborol-TTF6 and tetra(TTF-crown-ether) ph-
thalocyanine7 were prepared. However, no conductivities of
these solid fibers were measured. Some examples of self-
assembled electroactive fibers based on other electroactive
moieties were obtained by using oligothiophene,8 aromatic
disks,9 phthalocyanine,10 and oligo(p-phenylenevinylene).11
(3) (a) Bryce, M. R. Chem. Soc. ReV. 1991, 20, 355-390. (b) Nielsen, M. B.;
Lomholt, C.; Becher, J. Chem. Soc. ReV. 2000, 29, 153-164. (c) Bryce,
M. R. J. Mater. Chem. 2000, 10, 589-598. (d) Segura, J. L.; Mart´ın, N.
Angew. Chem., Int. Ed. 2001, 40, 1372-1409. (e) Schukat, G.; Fangha¨nel,
E. Sulfur Rep. 2003, 24, 1-190. (f) Wu, P.; Saito, G.; Imaeda, K.; Shi, Z.;
Mori, T.; Enoki, T.; Inokuchi, H. Chem. Lett. 1986, 441-444. (g)
Kobayashi, A.; Fujiwara, E.; Kobayashi, H. Chem. ReV. 2004, 104, 5243-
5264.
(4) (a) Dhindsa, A. S.; Bryce, M. R.; Lloyd, J. P.; Petty, M. C. Synth. Met.
1988, 27, B563-B568. (b) Richard, J.; Vandevyver, M.; Barraud, A.;
Morand, J. P.; Lapouyade, R.; Delhaes, P.; Jacquinot, J. F.; Roulliay, M.
J. Chem. Soc., Chem. Commun. 1988, 754-756. (c) Dhindsa, A. S.; Song,
Y.-P.; Badyal, J. P.; Bryce, M. R.; Lvov, Y. M.; Petty, M. C.; Yarwood,
J. Chem. Mater. 1992, 4, 724-728. (d) Bryce, M. R.; Petty, M. C. Nature
1995, 374, 771-776. (e) Bryce, M. R.; Moore, A. J.; Batsanov, A. S.;
Howard, J. A. K.; Petty, M. C.; Williams, G.; Rotello, V.; Cuello, A. J.
Mater. Chem. 1999, 9, 2973-2978. (f) Akutagawa, T.; Kakiuchi, K.;
Hasegawa, T.; Nakamura, T.; Christensen, C. A.; Becher, J. Langmuir 2004,
20, 4187-4195.
(5) (a) Collier, C. P.; Mattersteig, G.; Wong, E. W.; Luo, Y.; Beverly, K.;
Sampaio, J.; Raymo, F. M.; Stoddart, J. F.; Heath, J. R. Science 2000,
289, 1172-1175. (b) Stoddart, J. F.; et al. Chem.-Eur. J. 2003, 9, 2982-
3007. (c) Liu, Y.; Flood, A. H.; Moskowitz, R. M.; Stoddart, J. F. Chem.-
Eur. J. 2005, 11, 369-385.
(6) Jørgensen, M.; Bechgaard, K.; Bjørnholm, T.; Sommer-Larsen, P.; Hansen,
L. G.; Schaumburg, K. J. Org. Chem. 1994, 59, 5877-5882.
(7) Sly, J.; Kasa´k, P.; Gomar-Nadal, E.; Rovira, C.; Go´rriz, L.; Thordarson,
P.; Amabilino, D. B.; Rowan, A. E.; Nolte, R. J. M. Chem. Commun. 2005,
1255-1257.
† School of Engineering.
‡ Graduate School of Frontier Sciences.
(1) (a) Service, R. F. Science 2002, 295, 2398-2399. (b) Lehn, J.-M. Science
2002, 295, 2400-2403. (c) Kato, T. Science 2002, 295, 2414-2418. (d)
Hoeben, F. J. M.; Jonkheijm, P.; Meijer, E. W.; Schenning, A. P. H. J.
Chem. ReV. 2005, 105, 1491-1546. (e) Hartgerink, J. D.; Zubarev, E. R.;
Stupp, S. I. Curr. Opin. Solid State Mater. Sci. 2001, 5, 355-361. (f) Ikkala,
O.; ten Brinke, G. Chem. Commun. 2004, 2131-2137. (g) Simpson, C.
D.; Wu, J.; Watson, M. D.; Mu¨llen, K. J. Mater. Chem. 2004, 14, 494-
504. (h) Bushey, M. L.; Hwang, A.; Stephens, P. W.; Nuckolls, C. Angew.
Chem., Int. Ed. 2002, 41, 2828-2831. (i) Yoshio, M.; Mukai, T.; Ohno,
H.; Kato, T. J. Am. Chem. Soc. 2004, 126, 994-995. (j) Sawamura, M.;
Kawai, K.; Matsuo, Y.; Kanie, K.; Kato, T.; Nakamura, E. Nature 2002,
419, 702-705. (k) van Herrikhuyzen, J.; Syamakumari, A.; Schenning, A.
P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2004, 126, 10021-10027. (l)
Smith, R. C.; Fischer, W. M.; Gin, D. L. J. Am. Chem. Soc. 1997, 119,
4092-4093.
(2) (a) Abdallah, D. J.; Weiss, R. G. AdV. Mater. 2000, 12, 1237-1247. (b)
van Esch, J. H.; Feringa, B. L. Angew. Chem., Int. Ed. 2000, 39, 2263-
2266. (c) Mele´ndez, R. E.; Carr, A. J.; Linton, B. R.; Hamilton, A. D.
Struct. Bonding 2000, 96, 31-61. (d) Molecular Gels; Weiss, R. G., Terech,
P., Eds.; Kluwer Academic Press: Amsterdam, 2005. (e) Sugiyasu, K.;
Fujita, N.; Shinkai, S. J. Synth. Org. Chem. Jpn. 2005, 63, 359-369. (f)
Shinkai, S.; Murata, K. J. Mater. Chem. 1998, 8, 485-495.
9
10.1021/ja053496z CCC: $30.25 © 2005 American Chemical Society
J. AM. CHEM. SOC. 2005, 127, 14769-14775
14769