Communication
ChemComm
7 T. Kolter and K. Sandhoff, Annu. Rev. Cell Dev. Biol., 2005, 21,
81–103.
8 N. W. Andrews, Cell. Microbiol., 2019, 21, e13065.
9 C. S. Ferranti, J. Cheng, C. Thompson, J. Zhang, J. A. Rotolo,
S. Buddaseth, Z. Fuks and R. N. Kolesnick, J. Cell Biol., 2020,
219, e201903176.
product pair of ASM (Fig. 3C). These results are remarkable,
given the fact that SM is one of the most abundant plasma
membrane lipids and does not change its total concentration
rapidly.
In conclusion, we have succeeded in developing the first
photo-caged ASM inhibitor (PCAI). While decaged compound 1
shows full activity only at high concentrations with significant
background activity, PCAI appeared to be much more potent,
obviously due to better cell penetration. It is well possible that
compound 1 is partially uncaged during experiments with the
FRET probe employed for ASM monitoring. The presence of the
biologically labile butyryl groups was key to make PCAI suitable
for real world applications. The compound shows highly
significant inhibition of ASM in living cells after illumination.
Although a single illumination for 60 s is not enough to achieve
100% uncaging, it is definitely enough for a pronounced and
highly significant inhibition at most concentrations. Indeed,
illumination time may be even shortened at higher inhibitor
concentrations. In future, the PCAI approach might be further
improved by introduction of a longer sulfonic ester ‘‘tail’’ or
by photocages that combine photolability with lysosomal
enrichment.22 Certainly, PCAI will expand the toolbox for
sphingolipid research and should be suitable for exhibiting
spatio-temporal control over ASM during lipid signaling in cell
and tissue culture.
10 R. Goggel, S. Winoto-Morbach, G. Vielhaber, Y. Imai, K. Lindner,
L. Brade, H. Brade, S. Ehlers, A. S. Slutsky, S. Schutze, E. Gulbins and
S. Uhlig, Nat. Med., 2004, 10, 155–160.
11 H. Y. Chung, D. C. Hupe, G. P. Otto, M. Sprenger, A. C. Bunck,
M. J. Dorer, C. L. Bockmeyer, H. P. Deigner, M. H. Graler and
R. A. Claus, Mol. Med., 2016, 22, 412–423.
12 A. Carpinteiro, K. A. Becker, L. Japtok, G. Hessler, S. Keitsch,
M. Pozgajova, K. W. Schmid, C. Adams, S. Muller, B. Kleuser,
M. J. Edwards, H. Grassme, I. Helfrich and E. Gulbins, EMBO Mol.
Med., 2015, 7, 714–734.
13 E. Gulbins, M. Palmada, M. Reichel, A. Luth, C. Bohmer, D. Amato,
C. P. Muller, C. H. Tischbirek, T. W. Groemer, G. Tabatabai,
K. A. Becker, P. Tripal, S. Staedtler, T. F. Ackermann, J. van Breder-
ode, C. Alzheimer, M. Weller, U. E. Lang, B. Kleuser, H. Grassme and
J. Kornhuber, Nat. Med., 2013, 19, 934–938.
14 D. Canals, D. M. Perry, R. W. Jenkins and Y. A. Hannun,
Br. J. Pharmacol., 2011, 163, 694–712.
15 J. Kornhuber, P. Tripal, M. Reichel, L. Terfloth, S. Bleich, J. Wiltfang
and E. Gulbins, J. Med. Chem., 2008, 51, 219–237.
16 E. Naser, S. Kadow, F. Schumacher, Z. H. Mohamed, C. Kappe,
G. Hessler, B. Pollmeier, B. Kleuser, C. Arenz, K. A.
Becker, E. Gulbins and A. Carpinteiro, J. Lipid Res., 2020, 61,
896–910.
17 K. Yang, J. Yu, K. Nong, Y. Wang, A. Niu, W. Chen, J. Dong and
J. Wang, J. Med. Chem., 2020, 63, 961–974.
18 M. Kolzer, C. Arenz, K. Ferlinz, N. Werth, H. Schulze,
R. Klingenstein and K. Sandhoff, Biol. Chem., 2003, 384,
1293–1298.
19 A. G. Roth, S. Redmer and C. Arenz, ChemBioChem, 2009, 10,
2367–2374.
C. A. acknowledges financial support by the Deutsche For-
schungsgemeinschaft (AR 376-12/2).
20 C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer and A. Heckel,
Angew. Chem., Int. Ed., 2012, 51, 8446–8476.
21 L. Qiao, A. P. Kozikowski, A. Olivera and S. Spiegel, Bioorg. Med.
Chem. Lett., 1998, 8, 711–714.
Conflicts of interest
22 S. Feng, T. Harayama, D. Chang, J. T. Hannich, N. Winssinger and
H. Riezman, Chem. Sci., 2019, 10, 2253–2258.
There are no conflicts to declare.
23 Y. A. Kim, D. M. Ramirez, W. J. Costain, L. J. Johnston and
R. Bittman, Chem. Commun., 2011, 47, 9236–9238.
24 R. S. Lankalapalli, A. Ouro, L. Arana, A. Gomez-Munoz and
R. Bittman, J. Org. Chem., 2009, 74, 8844–8847.
25 C. J. Choy, C. R. Ley, A. L. Davis, B. S. Backer, J. J. Geruntho,
B. H. Clowers and C. E. Berkman, Bioconjugate Chem., 2016, 27,
2206–2213.
Notes and references
1 T. Kolter and K. Sandhoff, Angew. Chem., Int. Ed., 1999, 38,
1532–1568.
2 Y. A. Hannun and L. M. Obeid, Nat. Rev. Mol. Cell Biol., 2018, 19,
175–191.
3 G. Schwarzmann, C. Arenz and K. Sandhoff, Biochim. Biophys. Acta, 26 C. Schultz, Bioorg. Med. Chem., 2003, 11, 885–898.
2014, 1841, 1161–1173.
4 P. Haberkant and J. C. Holthuis, Biochim. Biophys. Acta, 2014, 1841,
1022–1030.
5 P. Haberkant, R. Raijmakers, M. Wildwater, T. Sachsenheimer,
B. Brugger, K. Maeda, M. Houweling, A. C. Gavin, C. Schultz,
27 S. Ogawa, K. L. Rinehart, G. Kimura and R. P. Johnson, J. Org. Chem.,
1974, 39, 812–821.
28 R. Serwa, I. Wilkening, G. Del Signore, M. Muhlberg, I. Claussnitzer,
C. Weise, M. Gerrits and C. P. Hackenberger, Angew. Chem., Int. Ed.,
2009, 48, 8234–8239.
G. van Meer, A. J. Heck and J. C. Holthuis, Angew. Chem., Int. Ed., 29 T. Pinkert, D. Furkert, T. Korte, A. Herrmann and C. Arenz, Angew.
2013, 52, 4033–4038. Chem., Int. Ed., 2017, 56, 2790–2794.
6 J. Morstein, R. Z. Hill, A. J. E. Novak, S. Feng, D. D. Norman, 30 C. Kappe, Z. H. Mohamed, E. Naser, A. Carpinteiro and C. Arenz,
P. C. Donthamsetti, J. A. Frank, T. Harayama, B. M. Williams, Chemistry, 2020, 26, 5780–5783.
A. L. Parrill, G. J. Tigyi, H. Riezman, E. Y. Isacoff, D. M. Bautista 31 M. J. Justice, I. Bronova, K. S. Schweitzer, C. Poirier, J. S. Blum,
and D. Trauner, Nat. Chem. Biol., 2019, 15, 623–631.
E. V. Berdyshev and I. Petrache, J. Lipid Res., 2018, 59, 596–606.
14888 | Chem. Commun., 2020, 56, 14885--14888
This journal is © The Royal Society of Chemistry 2020