Inorganic Chemistry
Article
Effect of an Aluminum-Metalloligand in Hydrosilylation of CO2. J.
Am. Chem. Soc. 2017, 139, 6074−6077.
(37) Sircoglou, M.; Bouhadir, G.; Saffon, N.; Miqueu, K.; Bourissou,
D. A Zwitterionic Gold(I) Complex From an Ambiphilic
Diphosphino-Alane Ligand. Organometallics 2008, 27, 1675−1678.
(38) Devillard, M.; Nicolas, E.; Appelt, C.; Backs, J.; Mallet-Ladeira,
S.; Bouhadir, G.; Slootweg, J. C.; Uhl, W.; Bourissou, D. Novel
Zwitterionic Complexes Arising from the Coordination of an
Ambiphilic Phosphorus-Aluminum Ligand to Gold. Chem. Commun.
2014, 50, 14805−14808.
(39) Layh, M.; Uhl, W.; Bouhadir, G.; Bourissou, D. Organo-
aluminum Compounds and Lewis Pairs. In The Chemistry of
Organoaluminum Compounds; Micouin, L., Marek, I., Rappoport, Z.,
Eds.; Wiley: Hoboken, NJ, 2017; pp 379−424.
(40) Menard, G.; Stephan, D. W. C-H Activation of Isobutylene
Using Frustrated Lewis Pairs: Aluminum and Boron σ-Allyl
Complexes. Angew. Chem., Int. Ed. 2012, 51, 4409−4412.
(41) Stephan, D. W.; Erker, G. Frustrated Lewis Pair Chemistry:
Development and Perspectives. Angew. Chem., Int. Ed. 2015, 54,
6400−6441.
(18) Rudd, P. A.; Liu, S.; Gagliardi, L.; Young, V. G., Jr.; Lu, C. C.
Metal-Alane Adducts with Zero-Valent Nickel, Cobalt, and Iron. J.
Am. Chem. Soc. 2011, 133, 20724−20727.
(19) Burlitch, J. M.; Leonowicz, M. E.; Petersen, R. B.; Hughes, R. E.
Coordination of Metal Carbonyl Anions to Triphenylaluminum,
-gallium, and -indium and the Crystal Structure of Tetraethylammo-
nium Triphenyl((η5-cyclopentadienyl)dicarbonyliron)aluminate (Fe-
Al). Inorg. Chem. 1979, 18, 1097−1105.
(20) Fong, H.; Moret, M.; Lee, Y.; Peters, J. C. Heterolytic H2
Cleavage and Catalytic Hydrogenation by an Iron Metallaboratrane.
Organometallics 2013, 32, 3053−3062.
(21) Suess, D. L. M.; Peters, J. C. H-H and Si-H Bond Addition to
Fe NNR2 Intermediates Derived from N2. J. Am. Chem. Soc. 2013,
135, 4938−4941.
(22) Anderson, J. S.; Rittle, J.; Peters, J. C. Catalytic Conversion of
Nitrogen to Ammonia by an Iron Model Complex. Nature 2013, 501,
84−87.
(42) Stephan, D. W. Frustrated Lewis Pairs: From Concept to
Catalysis. Acc. Chem. Res. 2015, 48, 306−316.
(43) Menard, G.; Stephan, D. W. H2 Activation and Hydride
Transfer to Olefins by Al(C6F5)3-Based Frustrated Lewis Pairs. Angew.
Chem., Int. Ed. 2012, 51, 8272−8275.
(23) Miller, A. J. M.; Labinger, J. A.; Bercaw, J. E. Homogeneous CO
Hydrogenation: Dihydrogen Activation Involves a Frustrated Lewis
Pair Instead of a Platinum Complex. J. Am. Chem. Soc. 2010, 132,
3301−3303.
(24) Bai, G.; Singh, S.; Roesky, H.; Noltemeyer, M.; Schmidt, H.
Mononuclear Aluminum Hydroxide for the Design of Well-Defined
Homogeneous Catalysts. J. Am. Chem. Soc. 2005, 127, 3449−3455.
(25) Devillard, M.; Declercq, R.; Nicolas, E.; Ehlers, A. W.; Backs, J.;
Saffon-Merceron, N.; Bouhadir, G.; Slootweg, J. C.; Uhl, W.;
Bourissou, D. A Significant but Constrained Geometry Pt -> Al
Interaction: Fixation of CO2 and CS2, Activation of H2 and
PhCONH2. J. Am. Chem. Soc. 2016, 138, 4917−4926.
(26) Bontemps, S.; Sircoglou, M.; Bouhadir, G.; Puschmann, H.;
Howard, J. A. K.; Dyer, P. W.; Miqueu, K.; Bourissou, D. Ambiphilic
Diphosphine-Borane Ligands: Metal -> Borane Interactions Within
Isoelectronic Complexes of Rhodium, Platinum and Palladium. Chem.
- Eur. J. 2008, 14, 731−740.
(27) Brewster, T. P.; Nguyen, T. H.; Li, Z.; Eckenhoff, W. T.; Schley,
N. D.; DeYonker, N. J. Heterobimetallic Aluminum Complexes of
Iridium and Rhodium: Synthesis, Characterization, and Reactivity.
Inorg. Chem. 2018, 57, 1148−1157.
(28) Cowie, B. E.; Emslie, D. J. H. Nickel and Palladium Complexes
of Ferrocene-Backbone Bisphosphine-Borane and Trisphosphine
Ligands. Organometallics 2015, 34, 4093−4101.
(29) Cowie, B. E.; Tsao, F. A.; Emslie, D. J. H. Synthesis and
Platinum Complexes of an Alane-Appended 1, 1 ‘-Bis(phosphino)-
ferrocene Ligand. Angew. Chem., Int. Ed. 2015, 54, 2165−2169.
(30) Fischer, R. A.; Weiss, J. Coordination Chemistry of Aluminum,
Gallium, and Indium at Transition Metals. Angew. Chem., Int. Ed.
1999, 38, 2830−2850.
(31) Bauer, G.; Nieger, M.; Gudat, D. Heterobimetallic Catechol-
Phosphine Complexes with Palladium and a Group-13 Element:
Structural Flexibility and Dynamics. Dalton Trans. 2014, 43, 8911−
8920.
(32) Fryzuk, M.; Gao, X.; Joshi, K.; MacNeil, P.; Massey, R.
Synthesis and Reactivity of the Coordinatively Unsaturated
Methylene Complex Ir = CH2[N(SiMe2Ch2PPh2)2]. J. Am. Chem.
Soc. 1993, 115, 10581−10590.
(33) Cammarota, R. C.; Clouston, L. J.; Lu, C. C. Leveraging
Molecular Metal-Support Interactions for H2 and N2 Activation.
Coord. Chem. Rev. 2017, 334, 100−111.
(44) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.;
Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR
Chemical Shifts of Trace Impurities: Common Laboratory Solvents,
Organics, and Gases in Deuterated Solvents Relevant to the
Organometallic Chemist. Organometallics 2010, 29, 2176−2179.
(45) Forrest, S. J. K.; Manojveer, S.; Johnson, M. T. Cooperative or
Oxidative Hydrogen Addition to 2-Hydroxypyridonate Iridium
Complexes: Dependence on Oxidation State. Eur. J. Inorg. Chem.
2017, 2017, 3239−3243.
(46) Morris, R. H. Bronsted-Lowry Acid Strength of Metal Hydride
and Dihydrogen Complexes. Chem. Rev. 2016, 116, 8588−8654.
(47) Gellrich, U. Reversible Hydrogen Activation by a Pyridonate
Borane Complex: Combining Frustrated Lewis Pair Reactivity with
Boron-Ligand Cooperation. Angew. Chem., Int. Ed. 2018, 57, 4779−
4782.
(48) Heaton, B. T.; Iggo, J. A.; Jacob, C.; Blanchard, H.; Hursthouse,
M. B.; Ghatak, I.; Harman, M. E.; Somerville, R. G.; Heggie, W.; Page,
P. R.; Villax, I. Structural and Spectroscopic Studies of Rhodium-(I)
and -(III) Nitrato Complexes. J. Chem. Soc., Dalton Trans. 1992,
2533−2537.
(49) Cambridge Crystallographic Data Centre Deposition Number
1289270, 1993.
(50) Duckett, S. B.; Eisenberg, R. Observation of H2 Oxidative
Addition to Chlorocarbonylbis(triphenylphosphine)rhodium(i) using
Parahydrogen-Induced Polarization. J. Am. Chem. Soc. 1993, 115,
5292−5293.
(51) de Charentenay, F.; Osborn, J. A.; Wilkinson, G. Interaction of
Silanes with Tris(triphenylphosphine)chlororhodium(1) and Other
Rhodium Complexes - Hydrosilation of Hex-1-Ene by use of
Trichlorosilane. J. Chem. Soc. A 1968, 787−790.
(52) Vaska, L. Reversible Activation of Covalent Molecules by
Transition Metal Complexes. The Role of the Covalent Molecule. Acc.
Chem. Res. 1968, 1, 335−344.
(53) In the experiment described above, the hydrogen pressure was
not directly measured. Reliable rate information with respect to the
hydrogen concentration could not be obtained.
(54) Hydrogen and Deuterium. International Union of Pure and
Applied Chemistry Solubility Data Series; Young, C. L., Ed.; Pergamon
Press: Elmsford, NY, 1981; Vol. 5/6, p 646.
(55) Collman, J.; Sears, C.; Kubota, M. Trans-Carbonylchlorobis-
(triphenylphosphine)iridium. Inorg. Synth. 2007, 28, 92−94.
(56) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A.
K.; Puschmann, H. OLEX2: A Complete Structure Solution,
Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42,
339−341.
(34) Moore, J. T.; Smith, N. E.; Lu, C. C. Structure and Dynamic
NMR Behavior of Rhodium Complexes Supported by Lewis Acidic
Group 13 Metallatranes. Dalton Trans. 2017, 46, 5689−5701.
(35) Cammarota, R. C.; Lu, C. C. Tuning Nickel with Lewis Acidic
Group 13 Metalloligands for Catalytic Olefin Hydrogenation. J. Am.
Chem. Soc. 2015, 137, 12486−12489.
(36) Donets, P. A.; Cramer, N. Diaminophosphine Oxide Ligand
Enabled Asymmetric Nickel- Catalyzed Hydrocarbamoylations of
Alkenes. J. Am. Chem. Soc. 2013, 135, 11772−11775.
J
Inorg. Chem. XXXX, XXX, XXX−XXX