11 D. A. Giljoham and C. A. Mirkin, Nature, 2009, 462, 461.
12 S. Bhattacharyya, R. A. Kudgus, R. Bhattacharyya and P. Mukherjee,
Pharm. Res., 2011, 28, 237.
Conclusions
The synthesis and characterization of 9,16,23-tris-(5-
trifluoromethyl-2-mercaptopyridine)-2-(carboxy)phthalocyanine
(3), 2,9,17,23-tetrakis-[(1, 6-hexanedithiol)phthalocyaninato]
zinc(II) (8) and [8,15,22-tris-(naptho)-2-(amidoethanethiol)
phthalocyanato] zinc(II) (10) was successfully achieved. Gold
nanoparticles were synthesized, characterized and linked to
phthalocyanines. Low fluorescence quantum yields, high triplet
quantum yields and low triplet lifetimes were observed for the
conjugates, compared to free Pc complexes with the exception
of 8 for UT. Fluorescence lifetimes indicate bi-exponential decay
kinetics for 3-AuNP and 10-AuNP where the much smaller
second lifetime was attributed to the linked species. However, the
8-AuNP conjugate showed a mono-exponential decay indicating
that the presence of four SH groups at the terminal end of the Pc
results in strong binding to the AuNP leading to non-fluorescent
phthalocyanines.
13 M. C. Daniel and D. Astruc, Chem. Rev., 2004, 104, 293.
14 Z. Tang and N. A. Kotov, Adv. Mater., 2005, 17, 951.
15 B. Duncan, C. Kim and V. M. Rotello, J. Controlled Release, 2010, 148,
122.
16 P. K. Jain, I H. El-Sayed and M A. El-Sayed, Nano Today, 2007, 2, 18.
17 Y. D. Cheng, J. D Meyers, A. M. Broome, M. E. Kenney, J. P. Basilion
and C. Burda, J. Am. Chem. Soc., 2011, 133, 2583.
18 Y. Cheng, A. C. Samia, J. Li, M. E. Kenney, A. Resnick and C. Burda,
Langmuir, 2010, 26, 2248.
19 M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic
and D. A. Russell, Photochem. Photobiol. Sci., 2006, 5, 727.
20 C. M. Goodman, C. D. McCusker, T. Yilmaz and V. M. Rotello,
Bioconjugate Chem., 2004, 15, 897.
21 C. J. Murphy, A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkilany, E.
C. Goldsmith and S. C. Baxter, Acc. Chem. Res., 2008, 41, 1721.
22 M. Camerin, M. Magaraggia, M. Soncin, G. Jori, G. M. Moreno, I.
Chambrier, M. J. Cook and D. A. Russell, Eur. J. Cancer, 2010, 46,
1910.
23 D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby,
I. Chambrier, M. J. Cook and D. A. Russell, Langmuir, 2002, 18, 2985.
24 A. Kotiaho, R. Lahtinen, A. Efimov, H. K. Metsberg, E. Sariola, H.
Lehtivuori, N. V. Tkachenko and H. Lemmetyinen, J. Phys. Chem. C,
2010, 114, 162.
Acknowledgements
25 M. G. Debacker, O. Deleplanque, B. Van Vlieberge and F. X. Sauvage,
Laser Chem., 1988, 8, 1.
26 N. Nombona, E. Antunes and T. Nyokong, Dyes Pigm., 2010, 86, 68.
27 J. G. Young and W. Onyebuagu, J. Org. Chem., 1990, 55, 2155.
28 N. Masilela and T. Nyokong, Dyes Pigm., 2011, 91, 164.
29 A. Erdogmus, S. Moeno, C. Litwinski and T. Nyokong, J. Photochem.
Photobiol., A, 2010, 210, 200.
This work was supported by the Department of Science and
Technology (DST) and National Research Foundation (NRF),
South Africa through DST/NRF South African Research Chairs
Initiative for Professor of Medicinal Chemistry and Nanotechnol-
ogy as well as Rhodes University and Medical Research Council
of South Africa.
30 N. Nombona, W. Chidawanyika and T. Nyokong, Polyhedron, 2011,
30, 654.
31 M. J. Stillman and T. Nyokong, in Phthalocyanines-Properties and
Applications, ed. A. B. P. Lever and C. C. Leznoff, VCH, New York,
1989.
32 M. Durmus¸ and T. Nyokong, Spectrochim. Acta, Part A, 2008, 69, 1170.
33 S. Sapra and D. D. Sarma, Pramana, 2005, 65, 565.
34 F. Mafune, Chem. Phys. Lett., 2004, 397, 133.
35 K. G. Thomas and P. V. Kamat, Acc. Chem. Res., 2003, 36, 888.
36 W. Freye, S. Mueller and K. J. Teuchner, J. Photochem. Photobiol., A,
2004, 163, 231.
37 J. R. Lakowicz, Anal. Biochem., 2005, 337, 171.
38 E. Dulkeith, M. Ringler, T. A. Klar, J. Feldmann, A. M. Javier and W.
J. Parak, Nano Lett., 2005, 5, 585.
39 M. Brust, M. Walker, D. Bethel, D. J. Schiffrin and R. Whyman, J.
Chem. Soc., Chem. Commun., 1994, 801.
40 J. R. Lakowicz, in Principles of Fluorescence Spectroscopy, Kluwer
Academic/Plenum Publishers, New York, 1999.
Notes and references
1 R. Bonnett, in Chemical Aspects of Photodynamic Therapy, Gordon
and Breach Science Publishers, Amsterdam, 2000.
2 R. K. Panday, J. Porphyrins Phthalocyanines, 2000, 4, 368.
3 I. Rosenthal, Photochem. Photobiol., 1991, 53, 859.
4 T. K. Lee, E. D. Baron and T. H. Foster, J. Biomed. Opt., 2008, 13,
030507.
5 T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M.
Korbelik, J. Moan and Q. Peng, J. Natl. Cancer Inst., 1998, 90, 889.
6 A. P. Castano, T. N. Demidova and M. R. Hamblin, Photodiagn.
Photodyn. Ther., 2005, 2, 1.
7 J. Usuda, S. M. Chiu, E. S. Murphy, M. Lam, A. L. Nieminen and N.
L. Oleinick, J. Biol. Chem., 2003, 278, 2021.
8 S. E. Choi, S. Sohn, J. W. Cho, E. A. Shin, P. S. Song and Y. Kang, J.
Photochem. Photobiol., B, 2004, 73, 101.
9 S. L. Haywood-Small, D. I. Vernon, J. Griffiths, J. Schofield and S. B.
Brown, Biochem. Biophys. Res. Commun., 2006, 339, 569.
10 K. Berg, P. K. Selbo, A. Weyergang, A. Dietze, L. Prasmickaite, A.
Bonsted, B. Ø. Engesaeter, E. Angellpetersen, T. Warloe, N. Frandsen
and A. Hogset, J. Microsc., 2005, 218, 133.
41 I. Chambrier, M. J. Cook and D. A. Russell, Synthesis, 1995, 1283.
42 S. Fery-Forgues and D. Lavabre, J. Chem. Educ., 1999, 76, 1260.
43 A. Ogunsipe, J. Y. Chen and T. Nyokong, New J. Chem., 2004, 28, 822.
44 T. H. Tran-Thi, C. Desforge and C. Thiec, J. Phys. Chem., 1989, 93,
1226.
45 J. Kossanyi and O. Chahraoui, Int. J. Photoenergy, 2000, 2, 9.
11884 | Dalton Trans., 2011, 40, 11876–11884
This journal is
The Royal Society of Chemistry 2011
©