10.1002/cbic.201800114
ChemBioChem
COMMUNICATION
[4]
[5]
a) T. F. A. de Greef, M. M. J. Smulders, M. Wolffs, A. P. H. J. Schenning,
R. P. Sijbesma, E. W. Meijer, Chem. Rev. 2009, 109, 5687-5754; b) T.
Aida, E. W. Meijer, S. I. Stupp, Science 2012, 335, 813-817; c) E. Krieg,
M. M. C. Bastings, P. Besenius, B. Rybtchinski, Chem. Rev. 2016, 116,
2414-2477.
secreted by Mϕ immediately after LPS-mediated activation. No
negative impact on the cytokine production was observed. Rather,
the treatment of the Mϕs has led to an increased production of
TNF-a while no increased levels of IL-6 were detected, which
suggested that the Mϕs become activated by the receptor
mediated uptake of mannosylated supramolecular particles
(Figure S7). These findings are promising for the development of
self-assembled multifunctional and fully synthetic glycopeptide
vaccines.
P. Besenius, Y. Goedegebure, M. Driesse, M. Koay, P. H. H. Bomans, A.
R. A. Palmans, P. Y. W. Dankers, E. W. Meijer, Soft Matter 2011, 7,
7980-7983.
[6]
[7]
M. H. Bakker, C. C. Lee, E. W. Meijer, P. Y. W. Dankers, L. Albertazzi,
ACS Nano 2016, 10, 1845–1852.
a) M. K. Müller, L. Brunsveld, Angew. Chem. Int. Ed. 2009, 48, 2921-
2924; b) M. K. Müller, K. Petkau, L. Brunsveld, Chem. Commun. 2011,
47, 310-312; c) K. Petkau-Milroy, D. M. Uhlenheuer, J. Spiering, J.
Vekemans, L. Brunsveld, Chem. Sci. 2013, 4, 2886-2891.
a) R. Appel, J. Fuchs, S. M. Tyrrell, P. A. Korevaar, M. C. A. Stuart, I. K.
Voets, M. Schönhoff, P. Besenius, Chem. Eur. J. 2015, 21, 19257-19264;
b) R. Appel, S. Tacke, J. Klingauf, P. Besenius, Org. Biomol. Chem. 2015,
13, 1030-1039; c) H. Frisch, Y. Nie, S. Raunser, P. Besenius, Chem. Eur.
J. 2015, 21, 3304-3309; d) P. Ahlers, H. Frisch, P. Besenius, Polym.
Chem. 2015, 6, 7245-7250.
Conclusions
Nanorod-like supramolecular polymers bearing a high-density
shell of mannosides or ethylene glycol moieties at their surface
were prepared via the self-assembly of functional comonomers,
which were further labelled with a fluorescent probe using copper-
mediated azide alkyne coupling. The resulting labelled polymers
were used to monitor cellular uptake into bone marrow-derived
murine Mϕs. A dendritic tetraethylene glycol and fluorescence
labeled homopolymeric FM- did not show measurable
internalization into Mϕs using confocal microscopy. However, co-
assembly of a fluorescent TEGylated monomer fM- with a non-
fluorescent mannosylated sM+ into supramolecular FM-/SM+
copolymers triggered cellular uptake. Surface mannose units thus
facilitate efficient cellular uptake via a mannose receptor-
mediated pathway, as confirmed by FACS analyses. Furthermore,
the incubation of the multifunctional supramolecular copolymers
with Mϕs did not negatively affect the cell viability or production of
proinflammatory cytokines. The copolymerization properties will
allow cross-presentation of various antigens, saccharides and
immunostimulants which are necessary to develop potent
multifunctional anti-tumor vaccines. The nanorod-shaped
viromimetic particles are a powerful and modular platform for the
development of fully synthetic vaccines, that effectively target
antigen-presenting cells and are capable of inducing a strong
immune response.
[8]
[9]
a) T. Keler, V. Ramakrishna, M. W. Fanger, Expert Opin. Biol. Ther. 2004,
4, 1953-1962; b) L.-Z. He, A. Crocker, J. Lee, J. Mendoza-Ramirez, X.-
T. Wang, L. A. Vitale, T. O’Neill, C. Petromilli, H.-F. Zhang, J. Lopez, D.
Rohrer, T. Keler, R. Clynes, J. Immunol. 2007, 178, 6259-6267; c) L.
Martinez-Pomares, J. Leukoc. Biol. 2012, 92, 1177-1186.
[10] a) D. A. Mann, M. Kanai, D. J. Maly, L. L. Kiessling, J. Am. Chem. Soc.
1998, 120, 10575-10582; b) C. R. Becer, M. I. Gibson, J. Geng, R. Ilyas,
R. Wallis, D. A. Mitchell, D. M. Haddleton, J. Am. Chem. Soc. 2010, 132,
15130-15132; c) E.-H. Song, M. J. Manganiello, Y.-H. Chow, B. Ghosn,
A. J. Convertine, P. S. Stayton, L. M. Schnapp, D. M. Ratner,
Biomaterials 2012, 33, 6889-6897; d) M. C. Galan, P. Dumy, O.
Renaudet, Chem. Soc. Rev. 2013, 42, 4599-4612; e) J. M. Fishman, L.
L. Kiessling, Angew. Chem. Int. Ed. 2013, 52, 5061-5064; f) B. Kang, P.
Okwieka, S. Schöttler, S. Winzen, J. Langhanki, K. Mohr, T. Opatz, V.
Mailänder, K. Landfester, F. R. Wurm, Angew. Chem. Int. Ed. 2015, 54,
7436-7440; g) B. Belardi, Carolyn R. Bertozzi, Chem. Biol. 2015, 22, 983-
993; h) R. De Coen, N. Vanparijs, M. D. P. Risseeuw, L. Lybaert, B.
Louage, S. De Koker, V. Kumar, J. Grooten, L. Taylor, N. Ayres, S. Van
Calenbergh, L. Nuhn, B. G. De Geest, Biomacromolecules 2016, 17,
2479-2488; i) L. Wu, Y. Zhang, Z. Li, G. Yang, Z. Kochovski, G. Chen, M.
Jiang, J. Am. Chem. Soc. 2017, 139, 14684-14692.
[11] a) J. Voskuhl, M. C. A. Stuart, B. J. Ravoo, Chem. Eur. J. 2010, 16, 2790-
2796; b) M. Delbianco, P. Bharate, S. Varela-Aramburu, P. H. Seeberger,
Chem. Rev. 2016, 116, 1693-1752.
Acknowledgements
We gratefully acknowledge the support from the DFG via the
collaborative research center SFB 1066 and thank Prof. H. Kunz
for stimulating discussions and critical reading of the manuscript.
[12] a) M. Mammen, S.-K. Choi, G. M. Whitesides, Angew. Chem. Int. Ed.
1998, 37, 2754-2794; b) C. Fasting, C. A. Schalley, M. Weber, O. Seitz,
S. Hecht, B. Koksch, J. Dernedde, C. Graf, E.-W. Knapp, R. Haag,
Angew. Chem. Int. Ed. 2012, 51, 10472-10498.
[13] a) H. C. Kolb, M. G. Finn, K. B. Sharpless, Angew. Chem. Int. Ed. 2001,
40, 2004; b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem.
2002, 67, 3057-3064.
Keywords: supramolecular polymer • multicomponent
biomaterials • self-assembly • mannose receptor-targeting •
immune cells
[14] S. Akira, T. Kishimoto, Curr. Opin. Hematol. 1996, 3, 87-93.
[15] M. Baer, A. Dillner, R. C. Schwartz, C. Sedon, S. Nedospasov, P. F.
Johnson, Mol. Cell. Biol. 1998, 18, 5678-5689.
[1]
[2]
[3]
S. Plotkin, Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 12283-12287.
E. R. Unanue, Ann. Rev. Immunol. 1984, 2, 395-428.
L. Song, G. Dong, L. Guo, D. T. Graves, Mol. Oral. Microbiol. 2018, 33,
13-21.
This article is protected by copyright. All rights reserved.