Cinchona-Modified Pt
1430 1437
[1] A. Baiker, H. U. Blaser in Handbook of Heterogeneous Catalysis,
Vol. 5 (Eds.: G. Ertl, H. Knˆzinger, J. Weitkamp), VCH, Weinheim,
1997, pp. 2422 2436.
indicates that in this reaction the effect of protonation of the
modifier is more important than in the hydrogenation of 1.
This being so, a spectroscopic analysis of the reactant cin-
chonidine AcOH system would be necessary to evaluate the
feasibility of the three-step reaction pathway in the hydro-
genation of ethyl pyruvate and other activated ketones over
chirally modified Pt.
[2] G. J. Hutchings, Chem. Commun. 1999, 301.
[3] T. Mallat, A. Baiker in Fine Chemicals through Heterogeneous
Catalysis (Eds.: R. A. Sheldon, H. V. Bekkum), VCH, Weinheim,
2001, pp. 449 460.
[4] G. V. Smith, F. Notheisz in Heterogeneous Catalysis in Organic
Chemistry, Academic Press, San Diego, 1999.
[5] P. B. Wells, K. E. Simons, J. A. Slipszenko, S. P. Griffiths, D. F. Ewing,
J. Mol. Catal. A. 1999, 146, 159.
[6] S. Niwa, S. Imai, Y. Orito, J. Chem. Soc. Jpn. 1982, 13 7.
[7] H. U. Blaser, H. P. Jalett, J. Wiehl, J. Mol. Catal. 1991, 68, 215.
Conclusion
¬
¬
[8] B. Tˆrˆk, K. Balazsik, G. Szˆllˆsi, K. Felfˆldi, M. Bartok, Chirality
The long-standing question of why AcOH, used as solvent or
additive in the enantioselective hydrogenation of activated
ketones over chirally modified Pt, affords the highest
enantioselectivities has been adressed. A systematic inves-
tigation of the role of AcOH and TFA in the hydrogenation of
trifluoromethyl ketone (1) revealed dramatic effects on
enantioselectivity and reaction rates. The results indicate
that–at least in the hydrogenation of 1–the reason for the
outstanding performance of the catalytic system can be traced
to the propensity of carboxylic acids to form acid modifier
ion-pair complexes. The existence of such complexes has been
confirmed by IR spectroscopy. These acid modifier ion-pair
complexes are suggested to act as the real chiral modifiers
over Pt. A new three-step reaction pathway, which can
rationalize the behaviour of the Pt cinchona system in the
presence of carboxylic acids is proposed.
1999, 11, 470.
[9] H. U. Blaser, H. P. Jalett, J. Wiehl, J. Mol. Catal. 1991, 68, 215.
[10] B. Minder, T. Mallat, P. Skrabal, A. Baiker, Catal. Lett. 1994, 29, 115.
[11] M. Sch¸rch, O. Schwalm, T. Mallat, J. Weber, A. Baiker, J. Catal. 1997,
169, 275.
[12] A. Szabo, N. K¸nzle, T. Mallat, A. Baiker, Tetrahedron: Asymmetry
1999, 10, 61.
[13] O. Schwalm, J. Weber, J. Margitfalvi, A. Baiker, J. Mol. Struct. 1993,
297, 285.
[14] O. Schwalm, B. Minder, J. Weber, A. Baiker, Catal. Lett. 1994, 23, 271.
[15] A. Baiker, J. Mol. Catal. A 1997, 115, 473.
[16] A. Baiker, J. Mol. Catal. A. 2000, 163, 205.
[17] G. D. H. Dijkstra, R. M. Kellogg, H. Wynberg, J. S. Svendsen, I.
Marko, K. B. Sharpless, J. Am. Chem. Soc. 1989, 111, 8069.
[18] G. D. H. Dijkstra, R. M. Kellogg, H. Wynberg, J. Org. Chem. 1990, 55,
6121.
[19] T. B¸rgi, A. Baiker, J. Am. Chem. Soc. 1998, 120, 12920.
¬
¬
[20] B. Tˆrˆk, K. Balazsik, K. Felfˆldi, M. Bartok, Stud. Surf. Sci. Catal.
2000, 130, 3381.
[21] G. Z. Wang, T. Mallat, A. Baiker, Tetrahedron: Asymmetry 1997, 8,
2133.
¬
¬
[22] B. Tˆrˆk, K. Felfˆldi, K. Balazsik, M. Bartok, Chem. Commun. 1999,
1725.
Experimental Section
[23] M. Studer, S. Burkhardt, H. U. Blaser, Chem. Commun. 1999, 1727.
[24] M. von Arx, T. Mallat, A. Baiker, J. Catal. 2000, 193, 161.
[25] M. von Arx, T. Mallat, A. Baiker, Tetrahedron Asymmetry 2002, 205,
213.
The 5 wt% Pt/Al2O3 catalyst (Engelhard 4759, metal dispersion after heat
treatment: 0.27, as determined by TEM) was pre-reduced in flowing
hydrogen for 90 minutes at 4008C. After cooling to room temperature in
hydrogen, the catalyst was transferred to the reactor without exposure to
air. Ethyl-4,4,4-trifluoroacetoacetate (1) was distilled, and THF was dried
over potassium before use. All other chemicals were used as received. O-
Methylcinchonidine (MeOCD)[42] and N-methylcinchonidinium chloride
(NMeCD)[43] were synthesised as described previously.
[26] W. R. Huck, T. B¸rgi, T. Mallat, A. Baiker, J. Catal., in press.
[27] W.-R. Huck, T. Mallat, A. Baiker, J. Catal. 2001, 200, 171.
[28] M. von Arx, T. Mallat, A. Baiker, Catal. Lett., in press.
[29] G. M. Barrow, E. A. Yerger, J. Am. Chem. Soc. 1954, 76, 5211.
[30] D. Ferri, T. B¸rgi, A. Baiker, J. Chem. Soc. Perkin Trans. 2 1999, 1305.
[31] J. D. S. Goulden, Spectrochim. Acta 1954, 6, 129.
[32] K. E. Simons, P. A. Meheux, S. P. Griffiths, I. M. Sutherland, P.
Johnston, P. B. Wells, A. F. Carley, M. K. Rajumon, M. W. Roberts,
A. Ibbotson, Rec. Trav. Chim. Pays-Bas 1994, 113, 465.
[33] B. Minder, T. Mallat, A. Baiker, G. Wang, T. Heinz, A. Pfaltz, J. Catal.
1995, 154, 371.
Hydrogenations were carried out at room temperature (approximately
208C) in an autoclave equipped with a 50 mL glass liner and a PTFE cover
in order to keep the system inert. Efficient magnetic stirring (1000 rpm)
was applied to avoid hydrogen transport limitation in the slurry reactor.
Total pressure (10 bar under standard conditions) and hydrogen uptake
were controlled by computerised constant-volume constant-pressure
equipment (B¸chi BPC9901). According to the general reaction procedure
the catalyst (42 Æ 2 mg) was added to a mixture of the modifier (6.8 mmol)
and the reactant (0.34 g, 1.85 mmol) in 5 mL solvent (reactant/modifier
molar ratio: 270). Conversion and enantioselectivities were determined by
direct gas chromatographic analysis of the reaction mixture using a chirasil-
DEX CB (Chrompack) capillary column in a HP6890 gas chromatograph.
For the hydrogenation reactions of 1, diglyme and decane were used as
internal standards in THF and toluene, respectively. Enantioselectivity is
¬
¬
[34] M. Bartok, T. Bartok, G. Szˆllˆsi, K. Felfˆldi, Catal. Lett. 1999, 61, 57.
[35] T. Evans, A. P. Woodhead, A. Gutierrez-Sosa, G. Thornton, T. J. Hall,
A. A. Davis, N. A. Young, P. B. Wells, R. J. Oldman, O. Plashkevych,
O. Vahtras, H. Agren, V. Carravetta, Surf. Sci. 1999, 436, L691.
[36] D. Ferri, T. B¸rgi, A. Baiker, Chem. Commun. 2001, 13, 1172.
[37] R. A. Nyquist, T. D. Clark, Vib. Spectrosc. 1996, 10, 203.
[38] M. Bodmer, T. Mallat, A. Baiker in Catalysis of Organic Reactions
(Ed.: F. E. Herkes), Marcel Dekker, New York, 1998, pp. 75 87.
[39] M. von Arx, T. B¸rgi, T. Mallat, A. Baiker, manuscript in preparation.
[40] X. Zuo, H. Liu, C. Guo, X. Yang, Tetrahedron 1999, 55, 7787.
[41] A. Szabo, N. K¸nzle, T. Mallat, A. Baiker, unpublished results.
[42] K. Borszeky, T. B¸rgi, Z. Zhaohui, T. Mallat, A. Baiker, J. Catal. 1999,
187, 160.
expressed as ee (%) 100 Âj (R À S) j (R S). Average reaction rates (r)
/
were calculated based on the time needed to obtain full conversion or, in
slow reactions, based on the conversion achieved in two hours of reaction
time. The estimated standard deviations are less than Æ0.5% for ee and
Æ5 20% for TOF (the higher values are related to the fast reactions).
[43] M. von Arx, T. Mallat, A. Baiker in Supported Reagents and their
Applications (Eds.: D. C. Sherrington, A. P. Kybett), Royal Society of
Chemistry, Special Publication, Cambridge, 2001, pp. 247 254.
Dichloromethane (Fluka) was used as solvent for the IR spectroscopy
experiments and was dried over molecular sieves (5 ä). A Bruker IFS-66
spectrometer was used at a resolution of 1 cmÀ1 and recording 200 scans.
The spectra were measured in a cell equipped with CaF2 windows with a
0.5 mm path length. The spectrum of pure dichloromethane was used as a
reference.
Received: September 3, 2001 [F3529]
Chem. Eur. J. 2002, 8, No. 6
¹ WILEY-VCH Verlag GmbH, 69451 Weinheim, Germany, 2002
0947-6539/02/0806-1437 $ 17.50+.50/0
1437