LETTER
Nitration of Fullerene Derivatives under Mild Conditions
1053
(10) (a) Nierengarten, J. F.; Solladie, N. J. Porphyrins
introduction of the second nitro moiety has a striking in-
fluence on the redox behavior. In all cases a shift to more
positive values by 20 mV with respect to the correspond-
ing mononitro compound was observed, which is a direct
consequence of an increase in the electronic effect of the
electron-accepting organic addend attached to the pyra-
zole ring.
Phtalocyanines 2005, 9, 760. (b) Nierengarten, J. F.; Hahn,
U.; Duarte, T. M. F.; Cardinali, F.; Solladie, N.; Walther, M.
E.; Van Dorsselaer, A.; Herschbach, H.; Leize, E.; Albrecht-
Gary, A. M.; Trabolsi, A.; Elhabiri, M. C. R. Chimie 2006,
9, 1022. (c) Rio, Y.; Enderlin, G.; Bourgogne, C.;
Nierengarten, J.-F.; Gisselbrecht, J.-P.; Gross, M.; Accorsi,
G.; Armaroli, N. Inorg. Chem. 2003, 42, 8783.
(11) Delgado, J. L.; de la Cruz, P.; López-Arza, V.; Langa, F.;
Kimball, D. B.; Haley, M. M.; Araki, Y.; Ito, O. J. Org.
Chem. 2004, 69, 2661.
(12) It has been previously reported that other 2,4-dinitro-
phenylhydrazones fail to give cycloaddition reactions. See:
Yap, G. P. A.; Alkorta, I.; Jarerovic, N.; Elguero, J. Aust.
J. Chem. 2004, 57, 1103; and references therein.
These results clearly indicate that these systems are stron-
ger electron acceptors than pristine C60. The remarkable
electron-acceptor character of these new molecules is of
interest for further applications in the preparation of
optoelectronic devices. Work is now in progress for the
preparation of blends with conjugated semi-conducting
polymers for photovoltaic applications.
(13) Compound 2b: A solution of p-nitrophenylhydrazine (1.0 g,
6.5 mmol), 3,5,5-trimethylhexanal (0.82 g, 6.5 mmol) and
two drops of AcOH in EtOH (50 mL) was heated under
reflux for 2 h. The solid was filtered off and recrystallized in
EtOH to give 2b as a red solid (1.47 g, 82%); mp 82.3–82.7
°C. 1H NMR (200 MHz, CDCl3): d = 8.13 (d, J = 9.2 Hz, 2
H), 7.90 (s, 1 H), 7.19 (t, 1 H), 6.99 (d, J = 9.2 Hz, 2 H),
2.10–2.40 (m, 2 H), 1.85 (m, 1 H), 1.32 (dd, J1 = 3.4 Hz,
J2 = 14.0 Hz, 1 H), 1.13 (dd, J1 = 6.2 Hz, J2 = 14.0 Hz, 1 H),
1.01 (d, J = 6.6 Hz, 3 H), 0.91 (s, 9 H). 13C NMR (50 MHz,
CDCl3): d = 150.3, 145.3, 144.5, 140.4, 139.7, 126.4, 126.3,
112.0, 111.3, 50.8, 50.6, 41.6, 35.7, 31.3, 31.3, 30.1, 28.2,
27.7, 23.0, 22.8. FT-IR (ATR): 3289, 2941, 1617, 1511,
1335, 1266 cm–1. Anal. Calcd for C15H23N3O2: C, 64.95; H,
8.36; N. 15.15. Found: C, 64.43; H, 8.13; N, 15.21.
Compound 3b: To a solution of hydrazone 2b (115 mg, 0.41
mmol) in anhyd CHCl3 (10 mL) was added, under an Ar
atmosphere, NBS (148 mg, 0.82 mmol). The mixture was
kept under agitation during 2 h at r.t. The solvent was
removed and an anhyd toluene (250 mL) solution of C60 (300
mg) and Et3N in excess were then added. The reaction was
kept under agitation at r.t. for 1.75 h. The toluene was then
evaporated under vacuum. The remaining solid was purified
by column chromatography (silica gel; toluene–hexane, 2:1)
to give 3b in 41% yield. 1H NMR (200 MHz, CDCl3): d =
8.30 (d, J = 9.6 Hz, 2 H), 8.16 (d, J = 9.6 Hz, 2 H), 3.15 (dd,
J1 = 5.9 Hz, J2 = 16.0 Hz, 1 H), 2.99 (dd, J1 = 8.0 Hz, J2 =
16.0 Hz, 1 H), 2.53 (m, 1 H), 1.65 (dd, J1 = 4.2 Hz, J2 = 14.6
Hz, 1 H), 1.37 (dd, J1 = 6.6 Hz, J2 = 14.7 Hz, 1 H), 1.33 (d,
J = 6.5 Hz, 3 H), 0.99 (s, 9 H). 13C NMR (50 MHz, CDCl3):
d = 150.47, 149.15, 147.94, 147.39, 146.75, 146.67, 146.56,
146.39, 146.34, 146.16, 145.76, 145.61, 145.53, 145.47,
145.34, 144.89, 144.64, 144.35, 143.74, 143.46, 143.20,
143.11, 142.64, 142.60, 142.50, 142.29, 141.82, 141.22,
141.14, 139.52, 139.44, 137.25, 136.24, 136.13, 129.28,
128.47, 125.76, 125.54, 118.58, 88.84, 84.28, 51.56, 39.37,
31.53, 31.21, 30.50, 29.96, 28.64, 23.34. FT-IR (KBr): 2941,
1597, 1535, 1335, 530 cm–1. MALDI–TOF: m/z calcd for
C75H21N3O2: 995.98; found: 995.9.
Acknowledgment
Financial support was provided by Ministerio de Educación y
Ciencia of Spain and FEDER funds (Project CTQ2004-00364/
BQU) and the Junta de Comunidades de Castilla-La Mancha
(Project PAI-05-068).
References and Notes
(1) Haufler, R. E.; Conceicao, J.; Chibante, L. P. F.; Chai, Y.;
Byrne, N. E.; Flanagan, S.; Haley, M. M.; O’Brien, S. C.;
Pan, C.; Xiao, Z.; Billups, W. E.; Ciufolini, M. A.; Hauge, R.
H.; Margrave, J. L.; Wilson, L. J.; Curl, R. F.; Smalley, R. E.
J. Phys. Chem. 1990, 94, 8634.
(2) Xie, Q.; Pérez-Cordero, E.; Echegoyen, L. J. Am. Chem. Soc.
1992, 114, 3978.
(3) (a) Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F.; Almarsson,
Science 1991, 254, 1186. (b) Echegoyen, L.; Echegoyen, L.
E. Acc. Chem. Res. 1998, 31, 593.
(4) (a) Langa, F.; Gomez-Escalonilla, M. J.; Rueff, J.; Figueira
Duarte, T. M.; Nierengarten, J.-F.; Palermo, V.; Samorì, P.;
Rio, Y.; Accorsi, G.; Armaroli, N. Chem. Eur. J. 2005, 11,
4405. (b) Gouloumis, A.; Oswald, F.; Langa, F.; El-Khouly,
M. E.; Araki, Y.; Ito, O. Eur. J. Org. Chem. 2006, 2344.
(c) Delgado, J. L.; El-Khouly, M. E.; Araki, Y.; Gómez-
Escalonilla, M. J.; de la Cruz, P.; Oswald, F.; Ito, O.; Langa,
F. Phys. Chem. Chem. Phys. 2006, 35, 4104.
(5) (a) Wang, X.; Perzon, E.; Delgado, J. L.; de la Cruz, P.;
Zhang, F.; Langa, F.; Andersson, M.; Inganäs, O. Appl.
Phys. Lett. 2004, 85, 5081. (b) Wang, X.; Perzon, E.;
Oswald, F.; Langa, F.; Admassie, S.; Andersson, M.;
Inganäs, O. Adv. Funct. Mater. 2005, 15, 1665. (c) Gadisa,
A.; Wang, X.; Admassie, S.; Perzon, E.; Oswald, F.; Langa,
F.; Andersson, M. R.; Inganas, O. Org. Electronics 2006, 7,
195.
(6) Illescas, B. M.; Martín, N. C. R. Chimie 2006, 9, 1038.
(7) (a) Da Ros, T.; Prato, M.; Carano, M.; Ceroni, P.; Paolucci,
F.; Roffia, S. J. Am. Chem. Soc. 1998, 120, 11645.
(b) Carano, M.; Da Ros, T.; Fanti, M.; Kordatos, K.;
Marcaccio, M.; Paolucci, F.; Prato, M.; Roffia, S.; Zerbetto,
F. J. Am. Chem. Soc. 2003, 125, 7139.
(8) (a) Langa, F.; Oswald, F. C. R. Chimie 2006, 9, 1058.
(b) Keshavarz, K. M.; Knight, B.; Haddon, R. C.; Wudl, F.
Tetrahedron 1996, 52, 5149.
(14) Delgado, J. L.; de la Cruz, P.; Lopez-Arza, V.; Langa, F.;
Gan, Z.; Araki, Y.; Ito, O. Bull. Chem. Soc. Jpn. 2005, 78,
1500.
(15) March, J. Advanced Organic Chemistry: Reactions,
Mechanisms and Structure, 5th ed.; McGraw-Hill: New
York, 2001, 696–699.
(16) Shackelford, S. A.; Anderson, M. B.; Christie, L. C.;
Goetzen, T.; Guzman, M. C.; Hananel, M. A.; Kornreich, W.
D.; Li, H.; Pathak, V. P.; Rabinovich, A. K.; Rajapakse, R.
J.; Truesdale, L. K.; Tsank, S. M.; Vazir, H. N. J. Org. Chem.
2003, 68, 267.
(9) (a) de la Cruz, P.; de la Hoz, A.; Langa, F.; Martín, N.; Pérez,
M. C.; Sánchez, L. Eur. J. Org. Chem. 1999, 3433.
(b) Deviprasad, G. R.; Rahman, M. S.; Souza, F. D. Chem.
Commun. 1999, 849.
(17) Experimental Procedure: To an anhyd CH2Cl2 solution of
the corresponding fullerene derivative 2 (1 equiv) in CH2Cl2,
Synlett 2007, No. 7, 1051–1054 © Thieme Stuttgart · New York