Acknowledgements
This work was supported by the PRESTO project, Japan
Science and Technology Agency and a Grant-In-Aid for
Science Research from the Ministry of Education, Culture,
Sports, Science and Technology, Japan. The authors thank Dr
Naoya Nishi (Kyoto Univ.) and Dr Ken Kawata (Fuji Film
Co. Ltd.) for their help and discussions.
Notes and references
{ XRD measurements were carried out with Cu Ka radiation equipped
with a Rigaku RINT-2000 diffractometer using Al sample pans.
Differential scanning calorimetry measurements were performed on a
METTLER DSC822e. Electrochemical measurements were carried out
with an ALS model 650A electrochemical analyzer. A standard three-
electrode system (a glassy carbon working electrode, platinum-wire counter
electrode, and Ag/Ag+/CH3CN electrode as reference) was used for CV
studies in solution. Liquid crystalline 1 was spin-coated (4000 rpm, 30 s)
from 100 ml of a 10 mM toluene solution on an indium tin oxide electrode
purchased from Sanyo Vacuum Industries Co. Ltd. (5.7 V h21, A =
2.4 cm2). The AFM image was taken with a NANOSCALE hybrid
microscope VN-8000 series (Keyence) in a tapping mode.
1 (a) Handbook of Liquid Crystals, ed. D. Demus, J, Goodby, G. W. Gray,
H.-W. Spiess and V. Vill, Wiley-VCH, Weinheim, Germany, 1998; (b)
T. Kato, N. Mizoshita and K. Kishimoto, Angew. Chem., Int. Ed., 2006,
45, 38; (c) J. W. Goodby, G. H. Mehl, I. M. Saez, R. P. Tuffin,
G. Mackenzie, R. Auze´ly-Velty, T. Benvegnu and D. Plusquellec, Chem.
Commun., 1998, 2057; (d) C. Tschierske, J. Mater. Chem., 2001, 11, 2647;
(e) M. H. Chisholm, Acc. Chem. Res., 2000, 33, 53; (f) D. W. Bruce, Acc.
Chem. Res., 2000, 33, 831; (g) L. Schmidt-Mende, A. Fechtenko¨tter,
K. Mu¨llen, E. Moons, R. H. Friend and J. D. MacKenzie, Science, 2001,
293, 1119; (h) J. D. Martin, C. L. Keary, T. A. Thornton, M. P.
Novotnak, J. W. Knutson and J. C. W. Folmer, Nat. Mater., 2006, 5,
271; (i) Y.-Y. Luk and N. L. Abbott, Science, 2003, 301, 623.
2 (a) M. Carano, T. Chuard, R. Deschenaux, M. Even, M. Marcaccio,
F. Paolucci, M. Prato and S. Roffa, J. Mater. Chem., 2002, 12, 829; (b)
J. C. Swarts, E. H. G. Langner, N. Krokeide-Hove and M. J. Cook,
J. Mater. Chem., 2001, 11, 434; (c) R. Deschenaux, M. Schweissguth and
A.-M. Levelut, Chem. Commun., 1996, 1275; (d) T. Komatsu, K. Ohta,
T. Fujimoto and I. Yamamoto, J. Mater. Chem., 1994, 4, 533.
3 (a) Metallomesogens: Synthesis, Properties and Applications, ed. J. L.
Serrano, Wiley-VCH, Weinheim, 1996; (b) B. Donnio, D. Guillon,
R. Deschenaux and D. W. Bruce, Metallomesogens, in Comprehensive
Coordination Chemistry II, ed. J. A. McCleverty and T. J. Meyer,
Elsevier, Oxford, 2004, vol. 7, p. 357.
Fig. 4 a) Anodic (blue line) and cathodic (red line) peak currents as a
function of the number of potential scans and b) repetitive CVs after the
twentieth cycle for a spin-coated film of 1 on an ITO electrode.
oxidized species into the electrolyte solution.8 The observed I–V
curve is characterized by diffusion tails with a peak separation
of 0.21 V (the twentieth scan), suggesting a diffusion-controlled
electron transfer process. The Emid values are linearly dependent
on the logarithm of the concentration of n-Bu4NClO4,{ suggesting
anion insertion/expulsion processes upon oxidation and reduction
accompanied by the redox processes described in eqn (1).8
4 (a) C. G. Pierpont and C. W. Lange, Prog. Inorg. Chem., 1994, 41, 331;
(b) C. G. Pierpont, Coord. Chem. Rev., 2001, 216–217, 99; (c) H.-C. Chang
and S. Kitagawa, Angew. Chem., Int. Ed., 2002, 41, 130; (d) H.-C. Chang,
H. Miyasaka and S. Kitagawa, Inorg. Chem., 2001, 40, 146.
5 T. M. Cocker and R. E. Bachman, Mol. Cryst. Liq. Cryst., 2004, 408, 1.
6 (a) S. Pal, D. Das, C. Sinha and C. H. L. Kennard, Inorg. Chim. Acta,
2001, 313, 21; (b) R. Roy, P. Chattopadhyay, C. Sinha and
S. Chattopadhyay, Polyhedron, 1996, 15, 3361.
7 The Colho phases mounted on the electrode are sufficiently stable at 25 uC
for several days.
8 (a) F. Scholz, U. Schro¨der and R. Gulaboski, Electrochemistry of
Immobilized Particles and Droplets, Springer, 2005; (b) J. D. Wadhawan,
A. J. Wain, A. N. Kirkham, D. J. Walton, B. Wood, R. R. France,
S. D. Bull and R. G. Compton, J. Am. Chem. Soc., 2003, 125, 11418; (c)
U. Schro¨der, J. Wadhawan, R. G. Evans, R. G. Compton, B. Wood,
D. J. Walton, R. R. France, F. Marken, P. C. B. Page and C. M. Hayman,
J. Phys. Chem. B, 2002, 106, 8697; (d) J. D. Wadhawan, R. G. Evans,
C. E. Banks, S. J. Wilkins, R. R. France, N. J. Oldham, A. J. Fairbanks,
B. Wood, D. J. Walton, U. Schro¨der and R. G. Compton, J. Phys.
Chem. B, 2002, 106, 9619; (e) J. D. Wadhawan, R. G. Evans and
R. G. Compton, J. Electroanal. Chem., 2002, 533, 71.
2
2
1Colho + ClO4
P 1+?ClO4
+ e2
ITO
(1)
DMSO
In summary, we demonstrate a strategy for the design of
electrochemically active LC materials. A significant stabilization of
the Colho phase is brought out by the interplay of the branched
alkyl chains and the stacking interactions of the central planar core
comprised of the asymmetric mixed ligands. The results reported
here also characterize the electrochemical activity of a metallo-
mesogen, promising to provide significant insight into the
electronic functions of LC materials. Further work is in progress
to control both molecular properties and macroscopic bulk
phases of liquid crystalline compounds by means of electro-
chemical stimulus.
4138 | J. Mater. Chem., 2007, 17, 4136–4138
This journal is ß The Royal Society of Chemistry 2007