Paper
Journal of Materials Chemistry B
13 F. Huang, Y. Gao and Y. Zhang, et al., Silver-decorated
Architecture, ACS Appl. Mater. Interfaces, 2016, 8(37),
polymeric micelles combined with curcumin for enhanced
24471–24481.
antibacterial activity, ACS Appl. Mater. Interfaces, 2017, 9(20), 30 S. Yuan, Y. Li and S. Luan, et al., Infection-resistant styrenic
16880–16889.
thermoplastic elastomers that can switch from bactericidal
capability to anti-adhesion, J. Mater. Chem. B, 2016, 4(6),
1081–1089.
14 X. Ding, S. Duan and X. Ding, et al., Versatile antibacterial
materials: An emerging arsenal for combatting bacterial
pathogens, Adv. Funct. Mater., 2018, 28(40), 1802140.
15 T. Wei, Q. Yu and W. Zhan, et al., A Smart Antibacterial
Surface for the On-Demand Killing and Releasing of Bacteria,
Adv. Healthcare Mater., 2016, 5(4), 449–456.
31 B. Horev, M. I. Klein and G. Hwang, et al., pH-activated
nanoparticles for controlled topical delivery of farnesol to disrupt
oral biofilm virulence, ACS Nano, 2015, 9(3), 2390–2404.
32 T. O. Peulen and K. J. Wilkinson, Diffusion of nanoparticles
in a biofilm, Environ. Sci. Technol., 2011, 45(8), 3367–3373.
16 Q. Yu, Z. Wu and H. Chen, Dual-function antibacterial
surfaces for biomedical applications, Acta Biomater., 2015, 33 J. W. Costerton, P. S. Stewart and E. P. Greenberg, Bacterial
16(1), 1–13.
biofilms: a common cause of persistent infections, Science,
1999, 284(5418), 1318–1322.
17 K. Zou, Q. Liu and J. Chen, et al., Silver-decorated bio-
degradable polymer vesicles with excellent antibacterial efficacy, 34 X. Li, Y. C. Yeh and K. Giri, et al., Control of nanoparticle
Polym. Chem., 2013, 5(2), 405–411.
18 W. Bing, Z. Chen and H. Sun, et al., Visible-light-driven
penetration into biofilms through surface design, Chem.
Commun., 2015, 51(2), 282–285.
enhanced antibacterial and biofilm elimination activity of 35 D. Hu, H. Li and B. Wang, et al., Surface-adaptive gold
graphitic carbon nitride by embedded Ag nanoparticles,
Nano Res., 2015, 8(5), 1648–1658.
19 J. Liu and R. H. Hurt, Ion release kinetics and particle
nanoparticles with effective adherence and enhanced photo-
thermal ablation of methicillin-resistant staphylococcus aureus
biofilm, ACS Nano, 2017, 11(9), 9330–9339.
persistence in aqueous nano-silver colloids, Environ. Sci. 36 Y. Su, L. Zhao and F. Meng, et al., Triclosan loaded poly-
Technol., 2010, 44(6), 2169–2175.
20 S. Kittler, C. Greulich and J. Diendorf, et al., Toxicity of silver
nanoparticles increases during storage because of slow
urethane micelles with pH and lipase sensitive properties
for antibacterial applications and treatment of biofilms,
Mater. Sci. Eng., C, 2018, 93, 921–930.
dissolution under release of silver ions, Chem. Mater., 2010, 37 Y. Guan, Y. Su and L. Zhao, et al., Biodegradable polyur-
22(16), 4548–4554.
ethane micelles with pH and reduction responsive proper-
ties for intracellular drug delivery, Mater. Sci. Eng., C, 2017,
75, 1221–1230.
21 B. Le Ouay and F. Stellacci, Antibacterial activity of silver
nanoparticles: a surface science insight, Nano Today, 2015,
10(3), 339–354.
22 J. R. Morones, J. L. Elechiguerra and A. Camacho, et al., The
bactericidal effect of silver nanoparticles, Nanotechnology,
2005, 16(10), 2346–2353.
38 Y. Zhong, C. Wang and L. Cheng, et al., Gold nanorod-cored
biodegradable micelles as a robust and remotely controllable
doxorubicin release system for potent inhibition of drug-
sensitive and-resistant cancer cells, Biomacromolecules, 2013,
14(7), 2411–2419.
23 S. Silver, Bacterial silver resistance: molecular biology and
uses and misuses of silver compounds, FEMS Microbiol. 39 Y. Lu, J. Jiang and S. Yoon, et al., High-Performance
Rev., 2003, 27(2–3), 341–353.
Stretchable Conductive Composite Fibers from Surface-
Modified Silver Nanowires and Thermoplastic Polyurethane
by Wet Spinning, ACS Appl. Mater. Interfaces, 2018, 10(2),
2093–2104.
24 M. Mahmoudi and V. Serpooshan, Silver-coated engineered
magnetic nanoparticles are promising for the success in the
fight against antibacterial resistance threat, ACS Nano,
2012, 6(3), 2656–2664.
25 Y. Su, L. Zhao and F. Meng, et al., Silver nanoparticles decorated
lipase-sensitive polyurethane micelles for on-demand release of
silver nanoparticles, Colloids Surf., B, 2017, 152, 238–244.
40 D. Kaewwichit, V. Aksornkitti and R. Rojanathanes, et al.,
Synthesis and structure-property relationship of lipoic acid-
containing porphyrin derivatives for mitochondria-targeting
applications, Inorg. Chim. Acta, 2018, 471, 305–309.
26 Y. Yao, D. Xu and C. Liu, et al., Biodegradable pH-sensitive 41 A. Sadownik, J. Stefely and S. L. Regen, Polymerized liposomes
polyurethane micelles with different polyethylene glycol
(PEG) locations for anti-cancer drug carrier applications,
RSC Adv., 2016, 6(100), 97684–97693.
formed under extremely mild conditions, J. Am. Chem. Soc.,
1986, 108(24), 7789–7791.
42 Y. Jiang, Y. Su and L. Zhao, et al., Preparation and antifouling
properties of 2-(meth-acryloyloxy)ethyl cholinephosphate
based polymers modified surface with different molecular
architectures by ATRP, Colloids Surf., B, 2017, 156, 87–94.
43 I. Wiegand, K. Hilpert and R. E. W. Hancock, Agar and broth
dilution methods to determine the minimal inhibitory
concentration (MIC) of antimicrobial substances, Nat. Protoc.,
2008, 3(2), 163–175.
27 B. M. Geilich, I. Gelfat, S. Sridhar, A. L. van de Ven and
T. J. Webster, Superparamagnetic iron oxide-encapsulating
polymersome nanocarriers for biofilm eradication, Biomaterials,
2017, 119, 78–85.
28 P. Liu, G. Xu and D. Pranantyo, et al., pH-Sensitive Zwitterionic
Polymer as an Antimicrobial Agent with Effective Bacterial
Targeting, ACS Biomater. Sci. Eng., 2017, 4(1), 40–46.
29 S. Yan, H. Shi and L. Song, et al., Nonleaching Bacteria- 44 F. Meng, Z. Qiao and Y. Yao, et al., Synthesis of polyurethanes
Responsive Antibacterial Surface Based on a Unique Hierarchical
with pendant azide groups attached on the soft segments
J. Mater. Chem. B
This journal is ©The Royal Society of Chemistry 2019