10.1002/anie.202015896
Angewandte Chemie International Edition
RESEARCH ARTICLE
C−H bond activation reactions of FeIV=O species.[7] In contrast,
significantly reduced KIEs of 1.2 (Figure 2D, Figure S12) and 2.1
(Figure S13) were determined for DHA and xanthene,
respectively, thereby pointing to a change of mechanism. Further
mechanistic insights were obtained by plotting the rate constants
against the pKa and the ionization energies (IE) of the substrates.
The log k2 vs IE plot (Figure 2B, Figure S20B) revealed that for
reactions of 2 with xanthene, DHA, indene and fluorene the rate
decreased linearly with increasing IE, whereas the rates for 1,4-
CHD, 1,3-CHD, ethylbenzene, cyclohexene and toluene scatter
irregularly. Furthermore, no linear trend was observed in the log
k2 vs pKa plot (Figure S20C) for all the investigated substrates.
Thus, the tBu3tacn ligand blocks the HAA pathway by presumably
impeding access of the bulkier polycyclic hydrocarbons to the
Fe=O unit in 2. An alternative oxidative asynchronous PCET
mechanism (Scheme 2) prevails in such cases, which are typically
characterized by low KIEs and a linear correlation of the reaction
rates to IEs.
Acknowledgements
This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under
Germany’sExcellence Strategy - EXC 2008 - 390540038 -
UniSysCat to K.R., P.H., and H.D. and the Heisenberg-
Professorship to K.R., and MINECO (CTQ2017-87392-P) and
FEDER (UNGI10-4E-801) to M.S. K.W. also thanks Einstein
Foundation Berlin (ESB) - Einstein Center of Catalysis (EC²) for
its support.
Keywords: Bioinorganic Chemistry • Enzyme Models • High-
Valent Iron • Hydrogen Atom Abstraction • Oxidative Proton
Coupled Electron Transfer Mechanism
Table 2. Comparison of the reaction rate constants k2’ (normalized to the
number of equivalent H atoms) at -40 °C for the C-H activation reaction of 2 and
the highly reactive intermediates (TMCO)FeIV=O, (Me3NTB)FeIV=O and
(TQA)FeIV=O towards a selection of substrates.
[1]
a) J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, C. Krebs,
Biochemistry 2003, 42, 7497-7508; b) J. M. Bollinger Jr., J. C.
Price, L. M. Hoffart, E. W. Barr, C. Krebs, Eur. J. Inorg. Chem.
2005, 2005, 4245-4254; c) C. Krebs, D. Galonić Fujimori, C. T.
Walsh, J. M. Bollinger, Acc. Chem. Res. 2007, 40, 484-492.
S. Sinnecker, N. Svensen, E. W. Barr, S. Ye, J. M. Bollinger, F.
Neese, C. Krebs, J. Am. Chem. Soc. 2007, 129, 6168-6179.
a) C. A. Grapperhaus, B. Mienert, E. Bill, T. Weyhermüller, K.
Wieghardt, Inorg. Chem. 2000, 39, 5306-5317; b) J.-U. Rohde, J.-
H. In, M. H. Lim, W. W. Brennessel, M. R. Bukowski, A. Stubna, E.
Münck, W. Nam, L. Que, Science 2003, 299, 1037; c) M. S. Seo,
N. H. Kim, K.-B. Cho, J. E. So, S. K. Park, M. Clémancey, R.
Garcia-Serres, J.-M. Latour, S. Shaik, W. Nam, Chemical Science
2011, 2, 1039-1045; d) S. Meyer, I. Klawitter, S. Demeshko, E. Bill,
F. Meyer, Angew. Chem. Int. Ed. 2013, 52, 901-905; e) D. Wang,
K. Ray, M. J. Collins, E. R. Farquhar, J. R. Frisch, L. Gómez, T. A.
Jackson, M. Kerscher, A. Waleska, P. Comba, M. Costas, L. Que,
Chemical Science 2013, 4, 282-291; f) I. Monte Pérez, X.
Engelmann, Y.-M. Lee, M. Yoo, E. Kumaran, E. R. Farquhar, E.
Bill, J. England, W. Nam, M. Swart, K. Ray, Angew. Chem. Int. Ed.
2017, 56, 14384-14388; g) J. B. Gordon, A. C. Vilbert, I. M.
DiMucci, S. N. MacMillan, K. M. Lancaster, P. Moënne-Loccoz, D.
P. Goldberg, J. Am. Chem. Soc. 2019, 141, 17533-17547; h) W.
Nam, Acc. Chem. Res. 2015, 48, 2415-2423; i) V. A. Larson, B.
Battistella, K. Ray, N. Lehnert, W. Nam, Nature Reviews Chemistry
2020, 4, 404-419; j) X. Engelmann, I. Monte-Pérez, K. Ray,
Angew. Chem. Int. Ed. 2016, 55, 7632-7649; k) J. J. D.
Sacramento, D. P. Goldberg, Acc. Chem. Res. 2018, 51, 2641-
2652; l) J. Chen, Z. Jiang, S. Fukuzumi, W. Nam, B. Wang, Coord.
Chem. Rev. 2020, 421, 213443; m) M. Guo, T. Corona, K. Ray, W.
Nam, ACS Central Science 2019, 5, 13-28; n) L. Que, Acc. Chem.
Res. 2007, 40, 493-500; o) A. R. McDonald, L. Que Jr, Coord.
Chem. Rev. 2013, 257, 414-428.
a) S. Shaik, H. Hirao, D. Kumar, Acc. Chem. Res. 2007, 40, 532-
542; b) L. Bernasconi, M. J. Louwerse, E. J. Baerends, Eur. J.
Inorg. Chem. 2007, 2007, 3023-3033; c) A. Decker, J.-U. Rohde,
E. J. Klinker, S. D. Wong, L. Que, E. I. Solomon, J. Am. Chem.
Soc. 2007, 129, 15983-15996; d) C. Geng, S. Ye, F. Neese,
Angew. Chem. Int. Ed. 2010, 49, 5717-5720.
a) J. England, Y. Guo, K. M. Van Heuvelen, M. A. Cranswick, G. T.
Rohde, E. L. Bominaar, E. Münck, L. Que, J. Am. Chem. Soc.
2011, 133, 11880-11883; b) J. England, M. Martinho, E. R.
Farquhar, J. R. Frisch, E. L. Bominaar, E. Münck, L. Que Jr.,
Angew. Chem. Int. Ed. 2009, 48, 3622-3626; c) D. C. Lacy, R.
Gupta, K. L. Stone, J. Greaves, J. W. Ziller, M. P. Hendrich, A. S.
Borovik, J. Am. Chem. Soc. 2010, 132, 12188-12190; d) J. P. Bigi,
W. H. Harman, B. Lassalle-Kaiser, D. M. Robles, T. A. Stich, J.
Yano, R. D. Britt, C. J. Chang, J. Am. Chem. Soc. 2012, 134,
1536-1542; e) A. N. Biswas, M. Puri, K. K. Meier, W. N. Oloo, G. T.
Rohde, E. L. Bominaar, E. Münck, L. Que, J. Am. Chem. Soc.
2015, 137, 2428-2431; f) M. Puri, L. Que, Acc. Chem. Res. 2015,
48, 2443-2452.
Substrate
(BDEC-H
k2‘ [M-1s-1]
[2]
[3]
,
kcal/mol)
2
(TMCO)
FeIV=O
(Me3NTB)
FeIV=O
(TQA)
FeIV=O
1.0 ∙ 102
1.6 [b]
7.8 ∙ 102
[a]
1,4-CHD (76.0)
DHA (76.3)
nd
nd
nd
Too fast
(90 °C)
0.10 [c]
2.4 ∙ 102
0.75
Ethylbenzene
(85.4)
Toluene (89.7)
3.3 [b]
1.1
0.21
0.43 [b]
0.0044 [c]
0.16
nd = rate not determined; k2’ values at 40 °C were calculated from the values measured at
[b]
[c]
[d]
[a] 90 °C; 70 °C; 60 °C; 50 °C and corrected for the temperature difference by
doubling the rate for every 10 degrees rise in temperature.
Taken together the results presented here unequivocally validate
the formation of
pseudotetrahedral
a
terminal oxoiron(IV) complex
geometry. The computational
2
in
and
a
experimental analyses are consistent with the presence of an S=2
FeIV=O core in 2. Complex 2 represents the only example of a
high-spin complex with metal-ligand multiple bond character in a
pseudotetrahedral geometry; notably,
a
pseudotetrahedral
[4]
[5]
oxoiron(IV) complex has been very recently demonstrated to
possess an S=0 state in the gas-phase.[19] The absorption
spectrum, Mössbauer ΔEQ, Fe K-edge energy, and the (Fe=O)
mode of 2 (Table 1) bear very close resemblance to the
corresponding spectroscopic properties of TauD-J. 2 also exhibits
the distinct high-reactivity features known from the strongly
oxidizing iron-oxo cores in biology and accordingly possesses
one of the most reactive oxoiron(IV) cores that have been
synthesized to date. Furthermore, a large KIE of 53 has been
determined for the reaction of 2 with ethylbenzene, which
compares well with the KIE of 57[1] determined for the oxidation of
taurine by TauD-J. The uniqueness of 2 within the non-heme
oxoiron family is, however, emphasized in its ability to oxidize
sterically hindered C-H bonds by an IE-driven asynchronous
PCET mechanism. Although, limited examples of C-H oxidation
by a basicity controlled PCET mechanism (scheme 2) are
known,[8, 20], evidence of oxidative PCET mechanism has stayed
elusive prior to this study. In conclusion, the high reactivity and
the similar spectroscopic parameters of 2 and TauD-J make 2 one
of the best structural, electronic and functional models for TauD-
J.
[6]
[7]
A. Thangavel, M. Wieliczko, J. Bacsa, C. C. Scarborough, Inorg.
Chem. 2013, 52, 13282-13287.
a) D. Mandal, S. Shaik, J. Am. Chem. Soc. 2016, 138, 2094-2097;
b) D. Mandal, D. Mallick, S. Shaik, Acc. Chem. Res. 2018, 51,
107-117; c) E. J. Klinker, S. Shaik, H. Hirao, L. Que Jr., Angew.
Chem. Int. Ed. 2009, 48, 1291-1295.
[8]
M. K. Goetz, J. S. Anderson, J. Am. Chem. Soc. 2019, 141, 4051-
4062.
4
This article is protected by copyright. All rights reserved.