10.1002/cctc.201700349
ChemCatChem
FULL PAPER
nitrogen mix. The output was connected to the reference channel of
the detector, previously passing through the oven to take the same
temperature. Both columns were filled with Molecular Sieve 13X. The
columns operating temperatures were 110 °C for the internal and -
100 °C for the external column. The detector temperature was 110
°C. As gas carrier, nitrogen chromatographic quality was used, at a
pressure of 2 kg/cm2 at the head of the column. The system for the
introduction of sample consisted of a 6-way valve with a loop of 1 mL
(Valco Instrument Co. Inc.) attached to a glass manometer of Hg of
two branches. The entire system was connected, through a needle
valve, to a vacuum pump made for LEYBOLD GmbH (model MINI A)
working at room temperature of 24 °C. This system allows the
transfer the gas sample in a container of fixed volume to the loop,
and the introduction to the chromatograph. Successive injections at
different pressures, allows the replicated of same sample. For the
acquisition interface from Data Apex Co. (model U-PAD2 USB) was
used with Clarity Lite Software for data analysis. Figure S2 shows
the experimental setup for this step. Amount of catalyst used:
1.2×10-9 mol.
1999, 38, 1427–1429.
[12]
[13]
Z. Gross, N. Galili, L. Simkhovich, I. Saltsman, M.
Botoshansky, D. Bläser, R. Boese, I. Goldberg, Org. Lett.
1999, 1, 599–602.
R. Paolesse, S. Mini, F. Sagone, T. Boschi, L. Jaquinod, D.
J. Nurco, K. M. Smith, Chem. Commun. 1999, 1307–1308.
D. T. Gryko, Chem. Commun. 2000, 2243–2244.
D. T. Gryko, K. Jadach, J. Org. Chem. 2001, 66, 4267–
4275.
[14]
[15]
[16]
[17]
[18]
R. M. Kellett, T. G. Spiro, Inorg. Chem. 1985, 24, 2373–
2377.
M. A. Morales Vásquez, S. A. Suárez, F. Doctorovich,
Mater. Chem. Phys. 2015, 159, 159–166.
R. K. Hocking, S. D. George, Z. Gross, F. A. Walker, K. O.
Hodgson, B. Hedman, E. I. Solomon, Inorg. Chem. 2009,
48, 1678–1688.
F. M. Toma, A. Sartorel, M. Iurlo, M. Carraro, P. Parisse, C.
Maccato, S. Rapino, B. R. Gonzalez, H. Amenitsch, T. Da
Ros, et al., Nat. Chem. 2010, 2, 826–831.
F. Li, L. Li, L. Tong, Q. Daniel, M. Göthelid, L. Sun, Chem.
Commun. 2014, 50, 13948–13951.
H. Li, B. Zhou, Y. Lin, L. Gu, W. Wang, K. A. S. Fernando,
S. Kumar, L. F. Allard, Y.-P. Sun, J. Am. Chem. Soc. 2004,
126, 1014–1015.
G. Bottari, G. de la Torre, T. Torres, Acc. Chem. Res. 2015,
48, 900–910.
[19]
[20]
[21]
[22]
[23]
F. D’Souza, R. Chitta, A. S. D. Sandanayaka, N. K.
Subbaiyan, L. D’Souza, Y. Araki, O. Ito, J. Am. Chem. Soc.
2007, 129, 15865–15871.
[24]
[25]
[26]
D. M. Guldi, G. M. A. Rahman, F. Zerbetto, M. Prato, Acc.
Chem. Res. 2005, 38, 871–878.
Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics
2012, 6, 511–518.
Y. Cheng, A. Memar, M. Saunders, J. Pan, C. Liu, J. D.
Gale, R. Demichelis, P. K. Shen, S. P. Jiang, J. Mater.
Chem. A 2016, 4, 2473–2483.
I. Hijazi, T. Bourgeteau, R. Cornut, A. Morozan, A. Filoramo,
J. Leroy, V. Derycke, B. Jousselme, S. Campidelli, J. Am.
Chem. Soc. 2014, 136, 6348–6354.
The gas (H2) production was determined by connecting the reaction
cell with a gas burette (25.0 0.5 mL), which’s lower end is
connected by a hose to an ampoule and all system is sealed with
Hgº. All volumes reported in this paper were taken at atmospheric
pressure as the internal pressure is equalized with the outside.
Figure S1 shows the experimental setup for this step. Amount of
catalyst used: 1.2×10-10 mol.
[27]
[28]
Q. Zhong, V. V. Diev, S. T. Roberts, P. D. Antunez, R. L.
Brutchey, S. E. Bradforth, M. E. Thompson, ACS Nano
2013, 7, 3466–3475.
Acknowledgements
[29]
[30]
[31]
[32]
[33]
A. Choi, H. Jeong, S. Kim, S. Jo, S. Jeon, Electrochim. Acta
2008, 53, 2579–2584.
W. Tu, J. Lei, H. Ju, Electrochem. commun. 2008, 10, 766–
769.
This work was financially supported by CONICET (PIP 112 201001
00125). MAMV and AYT thank CONICET for a fellowship grant. NIN,
MH, EJC and FD are members of CONICET.
F. Li, B. Zhang, X. Li, Y. Jiang, L. Chen, Y. Li, L. Sun,
Angew. Chemie 2011, 123, 12484–12487.
T. Dhanasekaran, J. Grodkowski, P. Neta, P. Hambright, E.
Fujita, J. Phys. Chem. A 1999, 103, 7742–7748.
J. Grodkowski, P. Neta, E. Fujita, A. Mahammed, L.
Simkhovich, Z. Gross, J. Phys. Chem. A 2002, 106, 4772–
4778.
B. Ramdhanie, J. Telser, A. Caneschi, L. N. Zakharov, A. L.
Rheingold, D. P. Goldberg, J. Am. Chem. Soc. 2004, 126,
2515–2525.
S. Matsuoka, T. Kohzuki, C. Pac, A. Ishida, S. Takamuku,
M. Kusaba, N. Nakashima, S. Yanagida, J. Phys. Chem.
1992, 96, 4437–4442.
D. Behar, T. Dhanasekaran, P. Neta, C. M. Hosten, D. Ejeh,
P. Hambright, E. Fujita, J. Phys. Chem. A 1998, 102, 2870–
2877.
Z. Ou, A. Lü, D. Meng, S. Huang, Y. Fang, G. Lu, K. M.
Kadish, Inorg. Chem. 2012, 51, 8890–8896.
D. N. Hendrickson, M. G. Kinnaird, K. S. Suslick, J. Am.
Chem. Soc. 1987, 109, 1243–1244.
B. Mondal, K. Sengupta, A. Rana, A. Mahammed, M.
Botoshansky, S. G. Dey, Z. Gross, A. Dey, Inorg. Chem.
2013, 52, 3381–3387.
Keywords: photocatalysis; electrocatalysis; metallocorroles;
hydrogen; synthesis; water splitting.
[1]
K. Peuntinger, T. Lazarides, D. Dafnomili, G. Charalambidis,
G. Landrou, A. Kahnt, R. P. Sabatini, D. W. McCamant, D.
T. Gryko, A. G. Coutsolelos, et al., J. Phys. Chem. C 2013,
117, 1647–1655.
[34]
[35]
[36]
[2]
[3]
[4]
H.-Y. Liu, M. H. Mahmood, S.-X. (Samuel) Qiu, C. K. Chang,
Coord. Chem. Rev. 2013, 257, 1306–1333.
D. T. Gryko, J. P. Fox, D. P. Goldberg, J. Porphyr.
Phthalocyanines 2004, 8, 1091–1105.
E. Vogel, S. Will, A. S. Tilling, L. Neumann, J. Lex, E. Bill, A.
X. Trautwein, K. Wieghardt, Angew. Chemie Int. Ed. English
1994, 33, 731–735.
[37]
[38]
[39]
[5]
S. Will, J. Lex, E. Vogel, H. Schmickler, J.-P. Gisselbrecht,
C. Haubtmann, M. Bernard, M. Gorss, Angew. Chemie Int.
Ed. English 1997, 36, 357–361.
[6]
[7]
Z. Gross, JBIC J. Biol. Inorg. Chem. 2001, 6, 733–738.
A. Mahammed, J. J. Weaver, H. B. Gray, M. Abdelas, Z.
Gross, Tetrahedron Lett. 2003, 44, 2077–2079.
H. Park, C. D. Vecitis, W. Choi, O. Weres, M. R. Hoffmann,
J. Phys. Chem. C 2008, 112, 885–889.
L. Shi, H.-Y. Liu, H. Shen, J. Hu, G.-L. Zhang, H. Wang, L.-
N. Ji, C.-K. Chang, H.-F. Jiang, J. Porphyr. Phthalocyanines
2009, 13, 1221–1226.
[40]
[41]
[42]
[43]
Z. Wang, H. Lei, R. Cao, M. Zhang, Electrochim. Acta 2015,
171, 81–88.
[8]
[9]
J. Wang, Y. Chen, W. J. Blau, J. Mater. Chem. 2009, 19,
7425.
D. Baskaran, J. W. Mays, X. P. Zhang, M. S. Bratcher, J.
Am. Chem. Soc. 2005, 127, 6916–6917.
G. A. M. Sáfar, H. B. Ribeiro, L. M. Malard, F. O. Plentz, C.
Fantini, A. P. Santos, G. de Freitas-Silva, Y. M. Idemori,
[10]
[11]
I. Aviv-Harel, Z. Gross, Coord. Chem. Rev. 2011, 255, 717–
736.
Z. Gross, N. Galili, I. Saltsman, Angew. Chemie Int. Ed.
10
This article is protected by copyright. All rights reserved.