Please do not adjust margins
ChemComm
Page 4 of 6
DOI: 10.1039/C8CC00565F
COMMUNICATION
Journal Name
7
8
9
C. Storkey, M. J. Davies, J. M. White and C. H. Schiesser,
Chem Commun, 2011, 47, 9693.
C. Storkey, D. I. Pattison, J. M. White, C. H. Schiesser and M.
J. Davies, Chem Res Toxicol, 2012, 25, 2589.
M. Iwaoka, N. Sano, Y. Y. Lin, A. Katakura, M. Noguchi, K.
Takahashi, F. Kumakura, K. Arai, B. G. Singh, A. Kunwar and
K. I. Priyadarsini, Chembiochem, 2015, 16, 1226.
In the case of peroxynitrous acid (ONOOH),
7
was the most
exhibiting
efficient scavenger, with the seven-membered ring
5
the slowest rate constant among the Te-sugars examined. The
variation between the highest and lowest values for these Te-
sugars is approximately 30-fold. The reasons for this much
larger variation compared to the data for HOCl and HOBr, is
unclear at present, and warrants further investigation. These
rate constants for reactions of the Te sugars with ONOOH are
significantly higher than those for reaction with the sulfur-
containing amino acids Cys and Met, which have k2 values in
the 102–103 M-1s-1 range, and other protein side-chains (e.g.,
Trp11 and references therein), and also significantly greater
than for the corresponding seleno sugars which have k2 values
of ~2.5 x 103 M-1s-1.11 These data therefore indicate that some
10 1F. Kumakura, B. Mishra, K. I. Priyadarsini and M. Iwaoka,
Eur J Org Chem, 2010, 440.
11 C. Storkey, D. I. Pattison, M. T. Ignasiak, C. H. Schiesser and
M. J. Davies, Free Radic Biol Med, 2015, 89, 1049.
12 S. Chakraborty, S. K. Yadav, M. Subramanian, K. I.
Priyadarsini, M. Iwaoka and S. Chattopadhyay, Free Radic
Res, 2012, 46, 1378.
13 C. H. Schiesser, C. Storkey and M. J. Davies, Int. Patent Appl.
WO 2016/054671.
14 C. H. Schiesser and L. M. Wild, Tetrahedron, 1996, 52, 13265.
15 S. H. Kyne and C. H. Schiesser, in Encyclopedia of Radicals in
Chemistry, Biology and Materials, eds. C. Chatgilialoglu and
A. Studer, John Wiley and Sons, Chichester, UK, 2012, pp.
629.
of these Te sugars (e.g., 7) are efficient scavengers of ONOOH,
and should be effective protective agents against damage
induced by this oxidant.
16 T. Kanda, L. Engman, I. A. Cotgreave and G. Prowls, J Org
Chem, 1999, 64, 8161.
17 X. Lu, G. Mestres, V. P. Singh, P. Effati, J. F. Poon, L. Engman
and M. Karlsson Ott, Antioxidants, 2017, 6, 13.
18 Z. B. Chen, J. W. Lv, F. Q. Chen and L. D. Lin, J Mol Catal B-
Enzym, 2008, 55, 99.
In summary, we herein report the synthesis and potent
oxidant scavenging activity of a family of novel, stable, water
soluble tellurium-containing sugars. These materials show very
high reactivities toward biologically important two-electron
oxidants, with the overall order of oxidant reactivity being
HOBr > HOCl > ONOOH.
19 L. Engman, D. Stern, M. Pelcman and C. M. Andersson, J Org
Chem, 1994, 59, 1973.
20 R. L. Puntel, D. S. Avila, D. H. Roos and S. Pinton, Curr Org
Chem, 2016, 20, 198.
21 L. Wang, F. Q. Fan, W. Cao and H. P. Xu, Acs Appl Mater Inter,
We thank the Australian Research Council through the Centres
of Excellence Scheme, the University of Melbourne through
the International Research and Research Training fund (IRRTF),
the Novo Nordisk Foundation (grants: NNF13OC0004294 and
NNF15OC0018300) for financial support, and CNPq (Brazil) for
scholarships and research fellowships granted to ELB and GP.
2015, 7, 16054.
22 Z. R. Lou, P. Li and K. L. Han, Acc Chem Res, 2015, 48, 1358.
23 K. Briviba, R. Tamler, L. O. Klotz, L. Engman, I. A. Cotgreave
and H. Sies, Biochem Pharmacol, 1998, 55, 817.
24 L. Orian and S. Toppo, Free Radic Biol Med, 2014, 66, 65.
25 A. C. G. Souza, C. Luchese, L. S. S. Neto and C. W. Nogueira,
Life Sci, 2009, 84, 351.
26 X. J. Ren, Y. Xue, K. Zhang, J. Q. Liu, G. M. Luo, J. Zheng, Y. Mu
and J. C. Shen, FEBS Lett, 2001, 507, 377.
Conflicts of interest
27 C. M. Andersson, R. Brattsand, A. Hallberg, L. Engman, J.
Persson, P. Moldeus and I. Cotgreave, Free Radic Res, 1994,
20, 401.
There are no conflicts to declare.
28 J. Malmstrom, M. Jonsson, I. A. Cotgreave, L. Hammarstrom,
M. Sjodin and L. Engman, J Am Chem Soc, 2001, 123, 3434.
29 M. McNaughton, L. Engman, A. Birmingham, G. Powis and I.
A. Cotgreave, J Med Chem, 2004, 47, 233.
30 O. T. K. Nguyen and C. H. Schiesser, Tetrahedron Lett., 2002,
43, 2799.
31 R. M. Hann, W. D. Maclay and C. S. Hudson, J Am Chem Soc,
1939, 61, 2432.
32 D. L. Klayman and T. S. Griffin, J Am Chem Soc, 1973, 95, 197.
33 C. Storkey, M. J. Davies and D. I. Pattison, Free Radic Biol
Med, 2014, 73, 60.
Notes and references
‡
In our experience, NaHTe is very sensitive to trace amounts
of O2, much more so than NaHSe. PEG-400 generally affords
higher yields than EtOH/THF, which we ascribe to the lower
solubility of adventitious O2.
§
decompose above 80 °C. However,
Melting points for
1
–
7
could not be determined as they
are stable solids
1, 2, 5–7
that were shipped from Melbourne to Copenhagen without
special precautions. The compounds were stored at -20 °C with
minimal exposure to light, and were unchanged over one year.
34 D. I. Pattison and M. J. Davies, Chem. Res. Toxicol., 2001, 14
,
1453.
35 D. I. Pattison and M. J. Davies, Biochemistry, 2004, 43, 4799.
1
2
3
T. C. Stadtman, Annu Rev Biochem, 1996, 65, 83.
J. Lu and A. Holmgren, J Biol Chem, 2009, 284, 723.
L. Flohe, S. Toppo, G. Cozza and F. Ursini, Antioxid Redox
Signal, 2011, 15, 763.
36 D. I. Pattison and M. J. Davies, Curr. Med. Chem., 2006, 13
3271
,
4
S. Gromer, L. Johansson, H. Bauer, L. D. Arscott, S. Rauch, D.
P. Ballou, C. H. Williams, Jr., R. H. Schirmer and E. S. Arner,
Proc Natl Acad Sci U S A, 2003, 100, 12618.
B. C. Lee, A. Dikiy, H. Y. Kim and V. N. Gladyshev, Biochim
Biophys Acta, 2009, 1790, 1471.
5
6
H. Sies, Free Radic Biol Med, 1993, 14, 313.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins