C.-H. Su et al.
Bull. Chem. Soc. Jpn., 77, No. 1 (2004)
193
(
2
CDCl3) ꢀ 1.26 (12H, m) 1.29 (3H, t, J ¼ 7:4 Hz), 1.61 (4H, m),
Mater., 10, 13 (1998). d) Z. L. Wang, S. A. Harfenist, R. L.
Whetten, J. Bentley, and N. D. Evans, J. Phys. Chem. B, 102,
3068 (1998). e) L. Motte, F. Billoudet, and M. P. Pileni, J. Phys.
Chem., 99, 16425 (1995).
.31 (2H, t, J ¼ 7:4 Hz), 2.66 (4H, m).
Synthesis of 16-Sulfanylhexadecanoic Acid (HS(CH2)15-
CO2H). The same procedure for the preparation of 11-sulfanyl-
undecanoic acid was used. 16-bromohexadecanoic acid (0.5 g,
1
fanylhexadecanoic acid (0.41 g, 95%). H NMR (CDCl3) ꢀ 1.26
4
See for example: a) Y. Shiraishi, D. Arakawa, and N.
.5 mmol) reacting with thiourea (0.17 g, 2.2 mmol) gave 16-sul-
1
Toshima, Eur. Phys. J. E, 8, 377 (2002). b) J. Simard, C. Briggs,
A. K. Boal, and V. M. Rotello, Chem. Commun., 2000, 1943. c)
W. Zhong, M. M. Maye, F. L. Leibowitz, and C. J. Zhong, Anal.
Chem., 72, 2190 (2000). d) A. C. Templeton, D. E. Cliffel, and
R. W. Murray, J. Am. Chem. Soc., 121, 7081 (1999). e) S. Gomez,
L. Erades, K. Philippot, B. Chaudret, V. Colli e´ re, O. Balmes, and
J.-O. Bovin, Chem. Commun., 2001, 1474. f) A. K. Boal, F. Ilhan,
J. E. DeRouchey, T. Thurm-Albrecht, T. P. Russell, and V. M.
Rotello, Nature, 404, 746 (2000). g) A. K. Boal and V. M. Rotello,
Langmuir, 16, 9527 (2000). h) L. Cusack, R. Rizza, A. Gorelov,
and D. Fitzmaurice, Angew. Chem., Int. Ed. Engl., 36, 848 (1997).
(
7
23H, m), 1.62 (4H, m), 2.35 (2H, t, J ¼ 7:5 Hz), 2.52 (2H, q, J ¼
:5 Hz).
Synthesis of 16-Ethyldisulfanylhexadecanoic Acid (EtSS-
(
CH2)15CO2H). The same procedure for the preparation of 11-
ethyldisulfanylundecanoic acid was used. 16-sulfanylhexadecano-
ic acid (0.41 g, 1.4 mmol) reacting with diethyl disulfide (0.35 g,
2
8
.8 mmol) gave 16-ethyldisulfanylhexadecanoic acid (0.41 g,
1
5%). H NMR (CDCl3) ꢀ 1.25 (22H, m), 1.31 (3H, t, J ¼ 7:4
Hz), 1.64 (4H, m), 2.33 (2H, t, J ¼ 7:4 Hz), 2.68 (4H, m).
Preparation of Functionalized Gold Nanoparticles. The Au
colloids were synthesized following the method of Natan et al. by
5
6
D. G. Grier, Nature, 393, 621 (1998).
E. Adachi, Langmuir, 16, 6460 (2000).
J. Kolny, A. Kornowski, and H. Weller, Nano Lett., 2, 361
ꢁ4
reacting 50 mL of 9:1 ꢃ 10 M HAuCl4 with an excess of triso-
7
(2002).
14
dium citrate in aqueous solution. The 5 mL of gold colloidal
aqueous solution was mixed with an ethanol solution containing
8
9
W. C. W. Chan and S. Nie, Science, 281, 2016 (1998).
G. P. Mitchell, C. A. Mirkin, and R. L. Lestinger, J. Am.
1
1
.1 mmol of HS(CH2)nCOOH or EtSS(CH2)nCOOH (n ¼ 10,
5). The resulting mixtures were used for UV–vis and TEM mea-
Chem. Soc., 121, 8122 (1999).
10 S. R. Johnson, S. D. Evans, and R. Brydson, Langmuir, 14,
6639 (1998).
11 S. Chen and K. Kimura, Langmuir, 15, 1075 (1999).
12 H. Yao, O. Momozawa, T. Hamatani, and K. Kimura,
Chem. Mater., 13, 4692 (2001).
surements. Electron micrographs of the Au colloids were carried
out using a drop of the sample onto a copper mesh coated with
an amorphous carbon film. This mesh was then dried in a vacuum
1
3
desiccator. For solid-state C NMR and FT-IR analysis, the col-
lected colloidal precipitates were washed three times with ethyl
acetate (5 mL) and water (5 mL) to remove the excess !-sulfanyl-
alkanoic or !-alkyldisulfanylalkanoic acids.
13 C. S. Weisbecker, M. V. Merritt, and G. H. Whitesides,
Langmuir, 12, 3763 (1996).
1
Anal. Chem., 67, 735 (1995).
15 R. H. Terrill, T. A. Postlethwaite, C. H. Chen, C. D. Poon,
A. Terzis, A. Chen, J. E. Hutchison, M. R. Clark, G. Wignall, J. D.
Londono, R. Superfine, M. Falvo, C. S. Johnson, E. T. Samulski,
and R. W. Murray, J. Am. Chem. Soc., 117, 12537 (1995).
4
C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan,
We thank the National Science Council of the Republic of
China for its financial support for this work. We also acknowl-
edge Ms. S. Y. Hsu and Mr. S. Y. Yao for the TEM measure-
ments and Ms. J. Z. Wu and Ms. S. Y. Sun for the solid-state
NMR analysis at Tainan Regional Instrument Center, National
Cheng Kung University.
1
1996). b) A. Badia, L. Demers, L. Dickinson, F. G. Morin, R.
6
See for example: a) A. Ulman, Chem. Rev., 96, 1533
(
B. Lennox, and L. Reven, J. Am. Chem. Soc., 119, 11104 (1997).
c) J. Noh, T. Murase, K. Nakajima, H. Lee, and M. Hara, J. Phys.
Chem. B, 104, 7411 (2000).
17 See for example: a) A. Badia, W. Gao, S. Singh, L. Cuccia,
and L. Reven, Langmuir, 12, 1262 (1996). b) B. S. Zelakiewicz, A.
C. de Diol, and Y. Y. Tong, J. Am. Chem. Soc., 125, 18 (2003).
18 H. Schmitt, A. Badia, L. Dickinson, L. Reven, and R. B.
Lennox, Adv. Mater., 10, 475 (1998).
References
1
A. Majetich, J. O. Artman, M. E. McHenry, N. T. Nuhfer,
and S. W. Staley, Phys. Rev. B: Condens. Matter, 48, 16845
(
1993).
2
J. J. Storhoff, R. Elghanian, R. C. Mucic, C. A. Mirkin, and
R. L. Lestinger, J. Am. Chem. Soc., 120, 1959 (1998).
See for example: a) S. L. Tripp and A. Wei, J. Am. Chem.
3
Soc., 123, 7955 (2001). b) M. Gianini, W. R. Caseri, and U. W.
Suter, J. Phys. Chem. B, 105, 7399 (2001). c) Z. L. Wang, Adv.
19 We acknowledge the editor and reviewer for the insightful
comments.