3970
C. Harcken, R. Bru¨ckner / Tetrahedron Letters 42 (2001) 3967–3971
The OH group of lactone cis,E-2b stayed inert under
Mitsunobu conditions21 even after prolonged stirring (2
days) at elevated temperature (80°C). Treatment with
PBu3, tetramethyl azodicarboxamide and PhCO2H22
furnished 47% of a 87:13 E/Z-mixture of the 1,2-elimi-
nation product, i.e. a-dodecylidene-g-methyl-D4-
butenolide. Attempted SN reactions with the mesylate
derived from cis,E-2b gave mixtures of the S%N-product
(KO2, DMSO, rt, 12 h23) and the 1,4-elimination
product (KOAc, 18-crown-6, DMF, 0°C, 8 h24). Lac-
tone cis,Z-2b resisted attempts of configurational inver-
sion, too.
859.
3. Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B.
Chem. Rev. 1994, 94, 2483–2547.
4. Precedents: (a) Wang, Z.-M.; Zhang, X.-L.; Sharpless, K.
B.; Sinha, S. C.; Sinha-Bagchi, A.; Keinan, E. Tetra-
hedron Lett. 1992, 33, 6407–6410; (b) Miyazaki, Y.;
Hotta, H.; Sato, F. Tetrahedron Lett. 1994, 35, 4389–
4392.
5. (a) Harcken, C.; Bru¨ckner, R. Angew. Chem. 1997, 109,
2866–2868; Angew. Chem., Int. Ed. Engl. 1997, 36, 2750–
2752; (b) Harcken, C.; Bru¨ckner, R.; Rank, E. Chem.
Eur. J. 1998, 4, 2342–2352 (corrigendum ibid. 2390); (c)
Berkenbusch, T.; Bru¨ckner, R. Tetrahedron 1998, 54,
11461–11470; (d) Berkenbusch, T.; Bru¨ckner, R. Tetra-
hedron 1998, 54, 11471–11480; (e) Harcken, C.; Bru¨ckner,
R. New J. Chem. 2001, 40–54; (f) Harcken, C.; Bru¨ckner,
R. Synlett 2001, 718–721.
Circumventing this inertia, a-alkylidene-b-hydroxylac-
tones trans,E-2b and trans,Z-2b were synthesized from
ester trans-11 by the strategy of Scheme 3, i.e. by an
aldol addition (1H NMR data: Table 1) followed by
stereospecific b-eliminations and standard or modified
ADs (Scheme 4). Even the PPh3/DEAD-mediated dehy-
dration delivering the hindered dienoic ester cis,Z-1b
was highly anti-selective (>99:1 Z/E- and 95:5 cis/
trans-ratios). The AD reactions of cis,E- and cis,Z-1b
produced hydroxylactones trans,E- and ent-trans,Z-2b
in only 15–22 and 28–30% yield, respectively. This
seems to be caused by lacking solubility—53% dienoic
ester cis,E-1b and 34% cis,Z-1b were re-isolated—and
by competing ADs of the CaꢀCb bond—6–15% dihy-
droxyesters 10a,b were found. According to chiral
HPLC, the ee of lactone trans,E-2b was 28–36% and
the ee of ent-trans,Z-2b 16%.25 The discrepancy
between the formation of (+)-litsenolide D2 (trans,E-2b)
from cis,E-1b and AD-mix a™ and Sharpless’
mnemonic guideline for the side-selectivity of this reac-
6. AD of the CaꢀCb% bond: Nicolaou, K. C.; Yue, E. W.; La
Greca, S.; Nadin, A.; Yang, Z.; Leresche, J. E.; Tsuri, T.;
Naniwa, Y.; De Riccardis, F. Chem. Eur. J. 1995, 1,
467–494.
7. (a) Li, Y.; Chen, Z.-X.; Huang, J.-M.; Huang, J.-X.; Xu,
Z.-H. Gaodeng Xuexiao Huaxue Xuebao 1997, 18, 914–
916 (Chem. Abs. 1997, 127, 220509); (b) Kende, A. S.;
Toder, B. H. J. Org. Chem. 1982, 47, 167–169.
8. Harcken, C. Doktorarbeit; Universita¨t Go¨ttingen: Ger-
many, 2000.
9. All new compounds gave satisfactory 1H NMR and IR
spectra as well as correct combustion analyses.
10. Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43,
2923–2925.
11. In the analogously configurated hydroxyesters 9 (n=0)
Ja,b% decreases in the same order cis,anti-9 (9.2 Hz)>
trans,anti-9 (8.4 Hz)>trans,syn-9 (5.2 Hz)>cis,syn-9 (4.8
Hz) as in our hydroxyesters 9a,b: Galatsis, P.; Millan, S.
D.; Nechala, P.; Ferguson, G. J. Org. Chem. 1994, 59,
6643–6651.
1
tion should be noted.3 By their H NMR spectra and
the signs of their specific rotations, lactones ent-
trans,Z-2b (levorotatory) and trans,E-2b (dextrorota-
tory) were identical with natural (−)-litsenolide D1 and
the mirror image of natural (−)-litsenolide D2, respec-
tively. These compounds were thus prepared in non-
racemic form for the first time, the straightforwardness
of our three-step route being attractive in view of
step-requirements between 8 and 13 of the previous
syntheses.26
12. Complete Z-selectivity: Corey, E. J.; Letavic, M. A. J.
Am. Chem. Soc. 1995, 117, 9616–9617 (corrigendum ibid.
12017).
13. Incomplete Z-selectivity: Knight, S. D.; Overman, L. E.;
Pairaudeau, G. J. Am. Chem. Soc. 1995, 117, 5776–5788.
14. Procedure: (a) Bradbury, R. H.; Walker, K. A. M. J.
Org. Chem. 1983, 48, 1741–1750; b-eliminations with
PPh3/DEAD from our group: (b) von der Ohe, F.;
Bru¨ckner, R. Tetrahedron Lett. 1998, 39, 1909–1910; (c)
von der Ohe, F.; Bru¨ckner, R. New J. Chem. 2000,
659–669; (d) Ref. 5e.
Acknowledgements
15. (a) Bennani, Y. L.; Sharpless, K. B. Tetrahedron Lett.
1993, 34, 2079–2082; (b) Blundell, P.; Ganguly, A. K.;
Girijavallabhan, V. M. Synlett 1994, 263–265.
16. Adam, W.; Klug, P. Synthesis 1994, 567–572.
17. No [h]D for natural cis,Z-2a was reported in Ref. 1b.
Ref. 18 gives [h]D=−37 for synthetic cis,Z-2a. Based on
that value our synthetic cis,Z-2a has ee:(−30)/(−37)=
81%.
This work was supported by the Deutsche Forschungs-
gemeinschaft. We are indebted to Dr. Olivier Lohse
(Novartis Pharma AG, Basel) for the determination of
the ee’s by chiral HPLC.
References
18. Tamaka, A.; Yamashita, K. Chem. Lett. 1981, 319–322.
19. Wood, W. W.; Watson, G. M. J. Chem. Soc., Perkin
Trans. 1 1987, 2681–2688 (steps 1–6) and J. Chem. Soc.,
Perkin Trans. 1 1990, 3201–3203 (steps 7–13).
20. Adam, W.; Renze, J.; Wirth, T. J. Org. Chem. 1998, 63,
226–227.
1. (a) Martinez V., J. C.; Yoshida, M.; Gottlieb, O. R. Tet-
rahedron Lett. 1979, 1021–1024; (b) Martinez V., J. C.;
Yoshida, M.; Gottlieb, O. R. Phytochemistry 1981, 20,
459–464.
2. (a) Takeda, K.; Sakurawi, K.; Ishii, H. Tetrahedron 1972,
28, 3757–3766; (b) Tanaka, H.; Nakamura, T.; Ichino,
K.; Ito, K.; Tanaka, T. Phytochemistry 1990, 29, 857–
21. Reviews: (a) Mitsunobu, O. Synthesis 1981, 1–28; (b)
Hughes, D. L. Org. React. 1992, 42, 335–656.