Experimentally, Nozi e` re and co-workers (11, 31) reported
CH O and CH C(O)CH product yields following reaction 1
in the presence of NO (11) and the yield of R-pinonyl
peroxynitrate following reactions 1 and 6 in the presence of
(9) Glasius, M.; Calogirou, A.; Jensen, N. R.; Hjorth, J.; Nielsen, C.
J. Kinetic study of gas-phase reactions of pinonaldehyde and
structurally related compounds. Int. J. Chem. Kinet. 1997, 29,
2
3
3
5
27-533.
(
10) Hallquist, M.; W a¨ ngberg, I.; Ljungstr o¨ m, E. Atmospheric
NO
products are in qualitative agreement. Jaoui and Kamens
28) have identified a number of stable photolysis end-
2
(31). The measured and predicted (3) yields for these
fate of carbonyl oxidation products originating from R-
3
pinene and ∆ -carene: Determination of rate of reaction
(
with OH and NO
vapor pressures. Environ. Sci. Technol. 1997, 31, 3166-
172.
3
radicals, UV absorption cross sections, and
products and have proposed reaction mechanisms to
account for their formation. Further studies are desired
for a more complete understanding of the pinonal-
dehyde oxidation mechanism, product yields, and the
possible impact on tropospheric ozone formation and
SOA.
In conclusion, pinonaldehyde is a reasonably well-defined
marker for the atmospheric chemistry of R-pinene (monot-
erpenes). Refinements in the pinonaldehyde yield from the
3
(
(
(
11) Nozi e` re, B.; Barnes, I.; Becker, K. H. Product study and
mechanisms of the reactions of R-pinene and of pinonalde-
hyde with OH radicals. J. Geophys. Res. 1999, 104, 23645-
2
3656.
12) Davis, M. E.; Gilles, M. K.; Ravishankara, A. R.; Burkholder, J.
B. Rate coefficients for the reaction of OH with (E)-2-pentenal,
(E)-2-hexenal, and (E)-2-heptenal. Phys. Chem. Chem. Phys.
2
007, doi: 10.1039/b700235a.
13) Jim e´ nez, E.; Gierczak, T.; Stark, H.; Burkholder, J. B.;
Ravishankara, A. R. Reaction of OH with HO NO (peroxy-
OH + R-pinene reaction, the NO + pinonaldehyde rate
3
2
2
coefficient, and the pinonaldehyde photolysis quantum yields
are, however, desired.
nitric acid): Rate coefficients between 218 and 335 K and
product yields at 298 K. J. Phys. Chem. A 2004, 108, 1139-
1
149.
Acknowledgments
(14) Sander, S. P.; Friedl, R. R.; Golden, D. M.; Kurylo, M. J.;
Moortgat, G. K.; Keller-Rudek, H.; Wine, P. H.; Ravishankara, A.
R.; Kolb, C. E.; Molina, M. J.; Finlayson-Pitts, B. J.; Huie, R. E.;
Orkin, V. L. Chemical Kinetics and Photochemical Data
for Use in Atmospheric Studies, JPL Pub. 06-2; Jet Propul-
sion Laboratory: Pasadena, 2006; Vol. Evaluation Num-
ber 15.
We thank M. Trainer and M. Hallquist for helpful discussions.
This work was funded in part by NOAA’s Air Quality and
Health of the Atmosphere programs. The work at the
University of Colorado was supported by the National Science
Foundation (CHE-0310674).
(
(
(
(
15) Hakola, H.; Arey, J.; Aschmann, S.; Atkinson, R. Product for-
mation from the gas-phase reactions of OH radicals and O
with a series of monoterpenes. J. Atmos. Chem. 1994, 18, 75-
02.
16) Nozi e` re, B.; Spittler, M.; Ruppert, L.; Barnes, I.; Becker, K. H.;
Pons, M.; Wirtz, K. Kinetics of the reactions of pinonaldehyde
with OH radicals and with Cl atoms. Int. J. Chem. Kinet. 1999,
31, 291-301.
Supporting Information Available
3
Diagrams of the experimental apparatus, molecular structures
for R-pinene, pinonaldehyde, and OH-pinonaldehyde ad-
ducts, representative measured OH temporal profiles, and
a detailed summary of literature data for R-pinene kinetics,
pinonaldehyde yield studies, and pinonaldehyde loss pro-
cesses are available in the Supporting Information. This
material is available free of charge via the Internet at http://
pubs.acs.org.
1
17) Kwok, E. S. C.; Atkinson, R. Estimation of hydroxyl radical
reaction rate constants for gas-phase organic compounds using
a structure-reactivity relationship: An update. Atmos. Environ.
1
995, 29, 1685-1695.
18) Vereecken, L.; Peeters, J. Enhanced H-atom abstraction
from pinonaldehyde, pinonic acid, pinic acid, and related
compounds: theoretical study of C-H bond strengths.
Phys. Chem. Chem. Phys. 2002, 4, 467-472, doi: 10.1039/
b109370c.
Literature Cited
(
1) Guenther, A.; Hewitt, C. N.; Erickson, D.; Fall, R.; Geron, C.;
Graedel, T.; Harley, P.; Klinger, L.; Lerdau, M.; McKay, W. A.;
Pierce, T.; Scholes, B.; Steinbrecher, R.; Tallamraju, R.; Taylor,
J.; Zimmerman, P. A global model of natural volatile organic
compound emissions. J. Geophys. Res. 1995, 100, 8873-
(19) Th e´ venet, R.; Mellouki, A.; Le Bras, G. Kinetics of OH and Cl
reactions with a series of aldehydes. Int. J. Chem. Kinet. 2000,
3
2, 676-685.
8892.
(
2) Atkinson, R.; Arey, J. Gas-phase tropospheric chemistry of
(20) Capouet, M.; Peeters, J.; Nozi e` re, B.; Muller, J.-F. Alpha-pinene
oxidation by OH: simulations of laboratory experiments. Atmos.
Chem. Phys. 2004, 4, 2285-2311.
(21) Librando, V.; Tringali, G. Atmospheric fate of OH initiated
oxidation of terpenes, reaction mechanism of R-pinene deg-
radation and secondary organic aerosol formation. J. Environ.
Manag. 2005, 75, 275-282.
biogenic volatile organic compounds: a review. Atmos. Environ.
2
003, 37, S197-S219.
3) Peeters, J.; Vereecken, L.; Fantechi, G. The detailed mechanism
of the OH-initiated atmospheric oxidation of R-pinene:
theoretical study. Phys. Chem. Chem. Phys. 2001, 3, 5489-
504.
(
a
5
(
4) Grossmann, D.; Moortgat, G. K.; Kibler, M.; Schlomski, S.;
B a¨ chmann, K.; Alicke, B.; Geyer, A.; Platt, U.; Hammer, M.-U.;
Vogel, B.; Mihelcic, D.; Hofzumahaus, A.; Holland, F.; Volz-
Thomas, A. Hydrogen peroxide, organic peroxides, carbonyl
compounds, and organic acids measured at Pabstthum during
BERLIOZ. J. Geophys. Res. 2003, 108, 8250, doi:10.1029/
(
22) Baker, J.; Aschmann, S. M.; Arey, J.; Atkinson, R. Reactions of
stabilized criegee intermediates from the gas-phase reactions
of O
5.
3
with selected alkenes. Int. J. Chem. Kinet. 2002, 34, 73-
8
(
(
23) Berndt, T.; B o¨ ge, O.; Stratmann, F. Gas-phase ozonolysis of
R-pinene: gaseous products and particle formation. Atmos.
Environ. 2003, 37, 3933-3945.
24) Warscheid, B.; Hofmann, T. On-line measurements of R-pinene
ozonolysis products using an atmospheric pressure chemical
ionisation ion-trap mass spectrometer. Atmos. Environ. 2001,
2001JD001096.
(
(
(
(
5) Kavouras, I. G.; Mihalopoulos, N.; Stephanou, E. G. Formation
and gas/particle partioning of monoterpenes photo-
oxidation products over forests. Geophys. Res. Lett. 1999, 26,
55-58.
3
5, 2927-2940.
6) Spanke, J.; Rannik, U.; Forkel, R.; Nigge, W.; Hoffmann, T.
Emission fluxes and atmospheric degradation of monoterpenes
above a boreal forest: field measurements and modelling. Tellus
(
25) Liggio, J.; Li, S.-M. Reactive uptake of pinonaldehyde on acidic
aerosols. J. Geophys. Res. 2006, 111, D24303, doi:10.1029/
2
005JD006978.
2
001, 53B, 406-422.
7) Holzinger, R.; Lee, A.; U, K. T. P.; Goldstein, A. H. Observations
of oxidation products above a forest imply biogenic emissions
of very reactive compounds. Atmos. Chem. Phys. 2005, 5, 67-
(26) Nozi e` re, B.; Riemer, D. D. The chemical processing of gas-phase
carbonyl compounds by sulfuric acid aerosols: 2,4-pentanedi-
one. Atmos. Environ. 2003, 37, 841-851.
(27) Atkinson, R.; Baulch, D. L.; Cox, R. A.; Crowley, J. N.;
Hampson, R. F.; Hynes, R. G.; Jenkin, M. E.; Rossi, M. J.;
Troe, J. Evaluated kinetic and photochemical data for
atmospheric chemistry: Volume IIsgas phase reactions of
organic species. Atmos. Chem. Phys. 2006, 6, 3625-
4055.
7
5.
8) Alvarado, A.; Arey, J.; Atkinson, R. Kinetics of the gas-
phase reactions of OH and NO
radicals and O with the
3
3
monoterpene reaction products pinonaldehyde, caronal-
dehyde and sabinaketone. J. Atmos. Chem. 1998, 31, 281-
297.
3
964
9
ENVIRONMENTAL SCIENCE & TECHNOLOGY / VOL. 41, NO. 11, 2007