842
C. Vogel et al. / Reactive & Functional Polymers 71 (2011) 828–842
[7] M. Schuster, K. Kreuer, H.T. Andersen, J. Maier, Macromolecules 40 (2007) 598–
4. Conclusions
607.
[8] M. Schuster, C.C. de Araujo, V. Atanasov, H.T. Andersen, K. Kreuer, J. Maier,
Macromolecules 42 (2009) 3129–3137.
Random as well as multiblock copolymers were successfully
prepared from 4,40-difluorodiphenyl sulfone, bis-(4-hydroxy phe-
nyl) sulfone and 2,5-diphenyl hydroquinone by nucleophilic dis-
placement polycondensation reaction using the silyl-method.
While the random copolymers had a linear structure with low
PD values, it turned out that during preparation of the multiblock
copolymers branching reactions occurred at the decafluoro biphe-
nyl unit. Nonetheless the multiblock copolymers were still soluble
in dipolar aprotic solvents. Contrary to the findings with monoph-
enylated polymers (using phenyl hydroquinone instead of 2,5-di-
phenyl hydroquinone) reported earlier by our group, a selective
sulfonation of the side-chain was achieved with conc. sulfuric acid.
Membranes prepared from both types of polymers were transpar-
ent and flexible. Although having comparable ion-exchange capac-
ities, the sulfonated multiblock copolymers showed higher proton
conductivities than the sulfonated random copolymers and at high
IEC (P1.95 mmol/g) even higher than NafionÒ at 100% relative
humidity, which was attributed to the relatively high water uptake
of the membranes prepared from the multiblock copolymers. On
the other hand, membranes prepared from random copolymers
with an IEC P1.8 mmol/g tend to soften to a high extend or even
dissolve in water at elevated temperatures.
[9] C.C. de Araujo, K.D. Kreuer, M. Schuster, G. Portale, H. Mendil-Jakani, G. Gebel, J.
Maier, Phys. Chem. Chem. Phys. 11 (2009) 3305–3312.
[10] C. Iojoiu, M. Marechal, F. Chabert, J. Sanchez, Fuel Cells 5 (2005) 344–354.
[11] J.F. Blanco, Q.T. Nguyen, P. Schaetzel, J. Appl. Polym. Sci. 84 (2002) 2461–
2473.
[12] B. Lafitte, L.E. Karlsson, P. Jannasch, Macromol. Rapid Commun. 23 (2002) 896–
900.
[13] L.E. Karlsson, P. Jannasch, Electrochim. Acta 50 (2005) 1939–1946.
[14] P. Jannasch, B. Lafitte, Adv. Funct. Mater. 17 (2007) 2823–2834.
[15] D.S. Kim, G.P. Robertson, Y.S. Kim, M.D. Guiver, Macromolecules 42 (2009)
957–963.
[16] B. Liu, G.P. Robertson, D. Kim, M.D. Guiver, W. Hu, Z. Jiang, Macromolecules 40
(2007) 1934–1944.
[17] J. Meier-Haack, H. Komber, C. Vogel, W. Butwilowski, K. Schlenstedt, D.
Lehmann, Macromol. Symp. 254 (2007) 322–328.
[18] B. Liu, G.P. Robertson, D. Kim, X. Sun, Z. Jiang, M.D. Guiver, Polymer 51 (2010)
403–413.
[19] S. Tian, Y. Meng, A.S. Hay, J. Polym. Sci.: Part A: Polym. Chem. 47 (2009) 4762–
4773.
[20] S. Tian, Y. Meng, A.S. Hay, Macromolecules 42 (2009) 1153–1160.
[21] C. Vogel, J. Meier-Haack, A. Taeger, D. Lehmann, Fuel Cells 4 (2004) 320–327.
[22] J. Yu, B. Yi, D. Xing, F. Liu, Z. Shao, Y. Fu, H. Zhang, Phys. Chem. Chem. Phys. 5
(2003) 611–615.
[23] H. Lee, A. Roy, O. Lane, M. Lee, J.E. McGrath, J. Polym. Sci.: Part A: Polym. Chem.
48 (2010) 214–222.
[24] H. Lee, A. Roy, O. Lane, S. Dunn, J.E. McGrath, Polymer 49 (2008) 715–723.
[25] A. Roy, M.A. Hickner, X. Yu, Y. Li, T.E. Glass, J.E. McGrath, J. Polym. Sci. Part B:
Polym. Phys. 44 (2006) 2226–2239.
Due to their high proton-conductivity and good dimensional
stability at elevated temperatures sulfonated multiblock copoly-
mers turned out to be promising candidates for membrane materi-
als in PEM fuel cells operated at temperatures up to 120 °C.
[26] M.V. Fedkin, X. Zhou, M.A. Hofmann, E. Chalkova, J.A. Weston, H.R. Allcock, S.
Lvov, Mater. Lett. 52 (2002) 192–196.
[27] P.R. Shildneck, R. Adams, J. Am. Chem. Soc. 53 (1931) 2373–2379.
[28] L. Birkofer, O. Stuhl, J. Organomet. Chem. 177 (1979) C16–C18.
[29] H. Deckers, Verfahren zur Herstellung von aromatischen Polyäthern, DE
3342433, 1985.
[30] C.A. Martinez, A.S. Hay, J. Polym. Sci.: Part A: Polym. Chem. 35 (1997) 1781–
1798.
Acknowledgment
[31] C.A. Martinez, A.S. Hay, J. Polym. Sci.: Part A: Polym. Chem. 35 (1997) 2015–
2033.
[32] J. Ding, M. Day, G.P. Robertson, J. Roovers, Macromol. Chem. Phys. 205 (2004)
1070–1079.
The authors like to thank Mrs. Harnisch and Mrs. Treppe for
conducting the gpc measurements.
[33] Y. Yang, Z. Shi, S. Holdcroft, Macromolecules 37 (2004) 1678–1681.
[34] M. Ueda, H. Toyota, T. Ouchi, J. Sugiyama, K. Yonetake, T. Masuko, T. Teramoto,
J. Polym. Sci.: Part A: Polym. Chem. 31 (1993) 853–858.
[35] F. Wang, M. Hickner, Y.S. Kim, T.A. Zawodzinski, J.E. McGrath, J. Membr. Sci.
197 (2002) 231–242.
[36] F. Wang, M. Hickner, Q. Ji, W. Harrison, J. Mecham, T.A. Zawodzinski, J.E.
McGrath, Macromol. Symp. 175 (2001) 387–395.
[37] M. Lee, J.K. Park, H. Lee, O. Lane, R.B. Moore, J.E. McGrath, D.G. Baird, Polymer
50 (2009) 6129–6138.
[38] Y.S. Kim, L. Dong, M.A. Hickner, T.E. Glass, V. Webb, J.E. McGrath,
Macromolecules 36 (2003) 6281–6285.
[39] C. Synowietz, K. Schäfer (Eds.), Chemiker Kalender, third ed., Springer Verlag,
Berlin, Heidelberg, New York, Tokyo, 1984, p. 592.
References
[1] C. Wieser, Fuel Cells 4 (2004) 245–250.
[2] M. Cakir, S. Karatas, Y. Menceloglu, N. Kayaman-Apohan, A. Güngör, Macromol.
Chem. Phys. 209 (2008) 919–929.
[3] H. Bi, S. Chen, X. Chen, K. Chen, N. Endo, M. Higa, K. Okamoto, L. Wang,
Macromol. Rapid Commun. 30 (2009) 1852–1856.
[4] N. Li, J. Liu, Z. Cui, S. Zhang, W. Xing, Polymer 50 (2009) 4505–4511.
[5] Z. Hu, Y. Yin, K. Okamoto, Y. Moriyama, A. Morikawa, J. Membr. Sci. 329 (2009)
146–152.
[6] G. Maier, J. Meier-Haack, Adv. Polym. Sci. 216 (2008) 1–62.