Journal of the American Chemical Society
Communication
Table 2. Apparent Stability Constants (logβ′metal:ligand) for
Am(III), Pu(IV), and Eu(III) Complexes with Ligands 1 and 2
Obtained by UV−vis Titration in Methanol/Water (75/25 v/
v) at 25 °C
REFERENCES
■
(1) (a) Magill, J.; Berthou, V.; Haas, D.; Galy, J.; Schenkel, R.; Wiese,
H. W.; Heusener, G.; Tommasi, J.; Youinou, G. Nucl. Energy 2003, 42,
263−277. (b) Baisden, P. A.; Choppin, G. R. Nuclear Waste
Management and the Nuclear Fuel Cycle. In Radiochemistry and Nuclear
Chemistry; Nagyl, S., Ed.; EOLSS Publishers: Oxford, U.K., 2007
(c) Reprocessing and Recycling of Spent Nuclear Fuel; Woodhead
Publishing: Oxford, 2015.
(2) Brook, B. W.; Alonso, A.; Meneley, D. A.; Misak, J.; Blees, T.; van
Erp, J. B. Sust. Mater. Techn. 2014, 1−2, 8−16.
(3) Lake, J. A.; Bennett, R. G.; Kotek, J. F. Sci. Am. 2002, 286, 72−81.
(4) Salvatores, M.; Palmiotti, G. Prog. Part. Nucl. Phys. 2011, 66, 144−
166.
(5) (a) Nash, K. L.; Madic, C.; Mathur, J. N.; Lacquement, J. In The
Chemistry of the Actinide and Transactinide Elements; Morss, L. R.,
Edelstein, N. M., Fuger, J., Eds.; Springer: Dordrecht, The Netherlands,
2006; Vol. 4, Chapter 24, pp 2622−2798. (b) Nash, K. L.; Lumetta, G. J.;
Clark, S. B.; Friese, J. I. Significance of the Nuclear Fuel Cycle in the 21st
Century. In Separations for the Nuclear Fuel Cycle in the 21st Century;
ACS Symposium Series;; Lumetta, G. J., Nash, K. L., Clark, S. B., Friese,
J. I., Eds.; ACS:Washington, DC, 2006; Vol. 933, pp 3−20.
(6) Science and Technology of Tributyl Phosphate; CRC Press Inc.: Boca
Raton, FL, 1990; Vol. III.
(7) (a) Bourg, S.; Hill, C.; Caravaca, C.; Rhodes, C.; Ekberg, C.; Taylor,
R.; Geist, A.; Modolo, G.; Cassayre, L.; Malmbeck, R.; Harrison, M.; De
Angelis, G.; Espartero, A.; Bouvet, S.; Ouvrier, N. Nucl. Eng. Des. 2011,
241, 3427−3435. (b) Modolo, G.; Geist, A.; Miguirditchian, M. Minor
Actinide Separations in the Reprocessing of Spent Nuclear Fuels:
Recent Advances in Europe. In Reprocessing and Recycling of Spent
Nuclear Fuel; Woodhead Publishing: Oxford, 2015; pp 245−287.
(8) (a) Modolo, G.; Vijgen, H.; Serrano-Purroy, D.; Christiansen, B.;
Malmbeck, R.; Sorel, C.; Baron, P. Sep. Sci. Technol. 2007, 42, 439−452.
(b) Ansari, S. A.; Pathak, P.; Mohapatra, P. K.; Manchanda, V. K. Chem.
Rev. 2012, 112, 1751−1772. (c) Galan, H.; Zarzana, C. A.; Wilden, A.;
Nunez, A.; Schmidt, H.; Egberink, R. J. M.; Leoncini, A.; Cobos, J.;
Verboom, W.; Modolo, G.; Groenewold, G. S.; Mincher, B. J. Dalton
Trans. 2015, 44, 18049−18056.
(9) Madic, C.; Hudson, M. J.; Liljenzin, J. O.; Glatz, J. P.; Nannicini, R.;
Facchini, A.; Kolarik, Z.; Odoj, R. Prog. Nucl. Energy 2002, 40, 523−526.
(10) Hudson, M. J.; Harwood, L. M.; Laventine, D. M.; Lewis, F. W.
Inorg. Chem. 2013, 52, 3414−3428.
(11) Panak, P. J.; Geist, A. Chem. Rev. 2013, 113, 1199−1236.
(12) Geist, A.; Mullich, U.; Magnusson, D.; Kaden, P.; Modolo, G.;
Wilden, A.; Zevaco, T. Solvent Extr. Ion Exch. 2012, 30, 433−444.
(13) Kolarik, Z. Chem. Rev. 2008, 108, 4208−4252.
(14) (a) Byrne, J. P.; Kitchen, J. A.; Gunnlaugsson, T. Chem. Soc. Rev.
2014, 43, 5302−5325. (b) Li, Y.; Huffman, J. C.; Flood, A. H. Chem.
Commun. 2007, 2692−2694. (c) Kiefer, C.; Wagner, A.; Beele, B. B.;
Geist, A.; Panak, P. J.; Roesky, P. W. Inorg. Chem. 2015, 54, 7301−7308.
(15) Scaravaggi, S.; Macerata, E.; Galletta, M.; Mossini, E.; Casnati, A.;
Anselmi, M.; Sansone, F.; Mariani, M. J. Radioanal. Nucl. Chem. 2015,
303, 1811−1820.
(16) (a) Fermvik, A.; Berthon, L.; Ekberg, C.; Englund, S.; Retegan, T.;
Zorz, N. Dalton Trans. 2009, 6421−6430. (b) Magnusson, D.;
Christiansen, B.; Malmbeck, R.; Glatz, J. Radiochim. Acta 2009, 97,
497−502. (c) Mincher, B. J.; Modolo, G.; Mezyk, S. P. Solvent Extr. Ion
Exch. 2009, 27, 1−25. (d) Fermvik, A. J. Radioanal. Nucl. Chem. 2011,
289, 811−817.
metal ion
ligand
Logβ′1:1
Logβ′1:2
counterion
Cl−
a
Am(III)
1
1
2
1
1
2
3.2 0.3
3.5 0.3
3.1 0.3
4.3 0.3
2.4 0.1
3.0 0.1
6.2 0.3
6.8 0.3
5.5 0.3
b
−
Am(III)
NO3
a
Am(III)
Cl−
c
−
Pu(IV)
NO3
Eu(III)
Cl−
Cl−
Eu(III)
a
b
pH = 4. In 0.44 M HNO3; the Am logβ′ values take into account the
c
ligand protonation (pKa = 2.1). With addition of HNO3 (∼0.6 M to
avoid the hydrolysis of Pu); the Pu logβ′1:1 values take into account
the ligand protonation (pKa = 2.1).
that of Eu(III). The higher affinity of ligands 1 and 2 for Am
compared to Eu also results in the formation of 1:2 complexes as
also supported by ESI-MS data (Figure SI13) and stripping tests
with high cL/cM ratios (Figure S12). Interestingly, the preference
of ligands 1 and 2 for An over Ln is consistent with the selectivity
for An found in extraction tests.
In summary, we have demonstrated the possibility to
successfully use hydrophilic PyTri ligands for the selective
stripping of Actinide ions having different oxidation states into a
water solution. The competitive TODGA-PyTri system used
takes advantage not only of a lower affinity of TODGA for
actinides but also of a higher affinity of the clicked triazole
derivatives for Am(III) and Pu(IV), as demonstrated by the
stability constants in homogeneous methanol/water solutions.
We believe that this extracting system, when applied to the
treatment of radioactive waste, will lead to paramount break-
through in the development of advanced separation processes
toward the closure of the nuclear fuel cycle.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Synthetic procedures and spectroscopic data, experimen-
tal details of the extraction experiments, complexation
studies, radiolytic stability tests, and stripping phase
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by EU-FP7 ACSEPT (Grant no.
211267) and SACSESS (Grant no. 323282) projects. We thank
the Centro Interdipartimentale Misure “G. Casnati” of Parma
University for the NMR and MS facilities. We also thank
ACTINET and TALISMAN projects for funding Stefano
Scaravaggi (five months) and Eros Mossini (three months) for
abroad research periods in CEA Marcoule.
D
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX