Macromolecules, Vol. 38, No. 16, 2005
Light-Emitting Polyquinolines 6921
126.4, 127.4, 127.9, 128.5, 129.0, 129.9, 138.5, 139.0, 140.7,
140.9, 141.3, 149.3, 149.8, 152.2, 155.6.
parameter analyzer. All of the measurements were performed
under ambient atmosphere at room temperature.
P2 (82%). 1H NMR (300 MHz, CDCl3): δ 6.80 (br, 2 H), 7.09
(br, 4 H), 7.32 (br, 2 H), 7.42 (br, 4 H), 7.58 (br m, 12 H), 7.80
(br, 2 H), 8.42 (br, 2 H). 13H NMR (75 MHz, CDCl3): δ 68.0,
117.2, 118.7, 12.3, 125.9, 126.1, 126.3, 127.5, 129.8, 130.1,
130.9, 139.8, 141.3, 141.6, 142.0, 145.6, 150.2, 150.8, 152.1,
153.4.
Acknowledgment. This work was supported by the
National Science Foundation of China, the Scientific
Research Foundation for the Overseas Chinese Scholars,
State Education Ministry of China, and the National
Fundamental Key Research Program of China (973
Project).
1
P3 (56%). H NMR (300 MHz, CDCl3): δ 0.87 (br m, 2 H),
1.27 (br m, 2 H), 1.79 (br m, 2 H), 4.22 (br, 2 H), 6.87 (br, 2
H), 7.14 (br, 2 H), 7.35 (br, 4 H), 7.61 (br m, 8 H), 7.71 (br, 4
H), 7.89 (br, 4 H), 8.24 (br, 2 H), 8.32 (br, 2 H), 8.75 (br, 2 H).
13H NMR (75 MHz, CDCl3): δ 14.1, 20.6, 31.3, 43.3, 65.5, 109.5,
116.1, 119.4, 119.8, 121.2, 123.7, 125.0, 125.3, 125.8, 126.0,
128.5, 128.7, 129.1, 130.0, 130.9, 139.3, 140.2, 141.3, 141.8,
142.0, 149.3, 149.5, 150.0, 152.2, 157.0.
Supporting Information Available: 1H and 13C NMR
spectra, XRD spectra, and DSC curves of polymers. This
material is available free of charge via the Internet at http://
pubs.acs.org.
1
P4 (75%). H NMR (300 MHz, CDCl3): δ 0.54-0.65 (br m,
References and Notes
10 H), 0.87 (br m, 12 H), 1.96 (br, 4 H), 6.82 (d, 2 H, J ) 6
Hz), 7.12 (br, 2 H), 7.35 (br, 2 H), 7.59 (br, 4 H), 7.67 (br m, 10
H), 7.77 (br, 2 H), 7.87 (d, 2 H, J ) 6.6 Hz), 7.96 (br, 2 H),
8.00 (d, 2 H, J ) 7.2 Hz), 8.27 (br, 2 H). 13H NMR (75 MHz,
CDCl3): δ 14.3, 22.9, 24.1, 29.9, 31.8, 40.8, 55.9, 65.5, 116.1,
119.6, 120.5, 121.2, 125.0, 125.5, 126.3, 126.7, 128.5, 128.7,
129.0, 129.9, 138.7, 139.2, 140.6, 141.0, 142.1, 149.3, 149.4,
149.9, 152.1, 156.6.
(1) (a) Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks,
R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B.
Nature (London) 1990, 347, 539. (b) Friend, R. H.; Gymer,
R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.;
Taliani, C.; Bradley, D. D. C.; dos Santos, D. A.; Bredas, J.
L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397,
121-128. (c) Ziemelis, K. Nature (London) 1999, 399, 408-
411. (d) Mark, T. B.; Inbasekaran, M.; O’Brien, J.; Wu, W.
Adv. Mater. 2000, 12, 1737-1750. (e) Kim, D. Y. Prog. Polym.
Sci. 2000, 25, 1089-1139. (f) (g) Heeger, A. J. Angew. Chem.,
Int. Ed. 2001, 40, 2591-2611. (h) Barny, P. L.; Dentan, V.;
Facoetti, H.; Vergnolle, M.; Ve´riot, G.; Servet, B.; Pribat, D.
C. R. Acad. Sci. Paris 2000, 493-508. (i) Cao, Y.; Parker, I.
D.; Yu, G.; Zhang, C.; Heeger, A. J. Nature (London) 1999,
397, 414-417.
(2) (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem.,
Int. Ed. 1998, 37, 402-428. (b) Lu, J.; Tao, Y.; D’iorio, M.;
Li, Y.; Ding, J.; Day, M. Macromolecules 2004, 37, 2442-
2449. (c) Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.;
Srdanov, G.; Mu¨llen, K. Adv. Mater. 2002, 14, 809-811. (d)
Yang, J.; Jiang, C.; Zhang, Y.; Yang, R.; Yang, W.; Hou, Q.;
Cao, Y. Macromolecules 2004, 37, 1211-1218.
(3) (a) Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc.
2004, 126, 3378-3379. (b) Babel, A.; Jenekhe, S. A. J. Phys.
Chem. B 2003, 107, 1749-1754. (c) Babel, A.; Jenekhe, S. A.
Adv. Mater. 2002, 14, 371-374. (d) Brabec, C. J.; Sariciftci,
N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15-26.
(e) Jenekhe, S. A.; Y, S. Appl. Phys. Lett. 2000, 77, 2635-
2637.
(4) (a) Mikroyaannidis, J. A.; Spiliopoulos, I. K.; Kasimis, T. S.;
Kullkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36,
9295-9302. (b) Yang, N. C.; Lee, S. M.; Yoo, Y. M.; Kim, J.
K.; Suh, D. H. J. Polym. Sci., Part A: Polym. Chem. 2004,
42, 1058-1068. (c) He, Y.; Gong, S.; Hattori, R.; Kanicki, J.
Appl. Phys. Lett. 1999, 74, 2265-2267. (d) Cui, Y.; Zhang,
X.; Jenekhe, S. A. Macromolecules 1999, 32, 3824-3826. (e)
Tonzola, C. J.; Alam, M. M.; Kaminsky, W.; Jenekhe, S. A.
J. Am. Chem. Soc. 2003, 125, 13548-13558. (f) Zhang, X.;
Jenekhe, S. A. Macromolecules 2000, 33, 2069-2082.
(5) (a) Stille, J. K. Macromolecules 1981, 14, 870-880. (b) Sybert,
P. D.; Beever, W. H.; Stille, J. K. Macromolecules 1981, 14,
493-502.
P5 (93%).1H NMR (300 MHz, CDCl3): δ 0.75 (br, 3 H), 1.03-
1.26 (br m, 8 H), 3.76 (br, 2 H), 6.72 (br, 2 H), 6.80 (d, 2 H, J
) 6 Hz), 7.09 (br, 2 H), 7.32 (br, 2 H), 7.49 (br, 2 H), 7.60 (br
m, 12 H), 7.72 (br, 2 H), 7.82 (br, 2 H, J ) 5.7 Hz), 8.23 (br, 2
H). 13H NMR (75 MHz, CDCl3): δ 14.3, 22.9, 26.7, 31.6, 46.2,
48.0, 65.4, 115.4, 116.0, 118.6, 121.1, 124.5, 124.9, 125.1, 126.1,
126.5, 128.4, 128.7, 128.9, 129.9, 133.6, 139.0, 140.3, 141.0,
145.5, 149.2, 149.8, 152.1, 154.8.
Instrumentation. 1H NMR spectra were recorded on a
Varian Unity 300 MHz spectrometer using CDCl3 as solvent.
IR spectra were obtained as KBr pellets on a Nicolet-170
SKFT-IR spectrometer. Wide-angle X-ray diffraction (WAXD)
patterns were obtained at room temperature on a Shimadzu
XRD 6000 powder diffractometer with Cu KR1 radiation (λ )
1.540 56 nm) by a graphic monochromator. Differential scan-
ning calorimetry (DSC) was performed with a Pyris 1 DSC
instrument under nitrogen at a heating rate of 15 °C/min with
gas flow of 20 mL/min. Thermogravimetric analysis (TGA) was
performed with a Shimadzu-DT 40 instrument at a heating
rate of 20 °C/min under static argon with a gas flow of 50 mL/
min. UV-vis absorption spectra were recorded on a Hitachi
U-3010 UV-vis recording spectrophotometer. PL and EL
spectra were performed on a Hitachi F-4500 fluorescence
spectrophotometer. The molecular weights were determined
by gel permeation chromatography with multiangle static light
scattering (GPC-MASLS). GPC-MALLS measurements were
performed on a DAWN DSP multiangle laser photometer with
a pump P100 (Thermo Separation Products, San Jose, CA)
equipped with a TSK-GEL G4000 HHR and a differential
refractive index detector (RI-150) at 25 °C. The eluent was
THF, and its flow rate was 1.00 mL/min. All solutions were
filtered with sand filter and 0.45 µm filter (PTFE, Puradisc
13 mm syringe filters, Whattman, England). Astra software
was utilized for data acquisition and analysis. Cyclic voltam-
metry (CV) were recorded on a CHI voltammetric analyzer at
room temperature in CH3CN-containing tetrabutylammonium
hexafluorophosphate (TBAPF6) with a scan rate of 100 mV/s.
We used a platinum disk as working electrode and a silver
wire as quasi-reference electrode. Ferrocene was used for
potential calibration (all reported potentials are referenced
against SCE).
(6) (a) Zhang, X.; Shetty, A. S.; Jenekhe, S. A. Macromolecules
1999, 32, 7422-7429. (b) Zhang, X.; Jenekhe, S. A. Macro-
molecules 2000, 33, 2069-2082. (c) Jenekhe, S. A.; Lu, L.;
Alam, M. M. Macromolecules 2001, 34, 7315-7324. (d) Zhang,
X.; Kale, D. M.; Jenekhe, S. A. Macromolecules 2002, 35,
382-393. (e) Tonzola, C. J.; Alam, M. M.; Bean, B. A.;
Jenekhe, S. A. Macromolecules 2004, 37, 3554-3563.
(7) (a) Liu, M. S.; Liu, Y.; Urian, R. C.; Ma, H.; Jen, A. K.-Y. J.
Mater. Chem. 1999, 9, 2201-2204. (b) Liu, Y.; Ma, H.; Jen,
A. K.-Y. Chem. Mater. 1999, 11, 27. (c) Wang, S.; Liu, Y.;
Zhang, X. W.; Yu, G.; Zhu, D. B. Synth. Met. 2003, 137, 1153-
1154.
LEDs Fabrication and Measurement. EL devices were
fabricated using indium-tin oxide (ITO, 30 Ω/square) glass
as an anode and aluminum (Al) as a cathode. The polymers
were dissolved in chloroform and then spin-coated to ITO
substrate. All the thermal evaporation was performed at about
4 × 10-4 Pa. The active area of devices was about 5 mm2. The
power of EL emission was measured using a Newport 2835-C
multifunction optical meter. Current-voltage characteristics
were measured with a Hewlett-Packard 4140B semiconductor
(8) Kru¨ger, H.; Janietz, S.; Sainova, D.; Wedel, A. Macromol.
Chem. Phys. 2003, 204, 1607-1615.
(9) Fungo, F.; Jenekhe, S. A.; Bard, A. J. Chem. Mater. 2003,
15, 1264-1272.
(10) (a) Tong, H.; Wang, L.; Jing, X.; Wang, F. Macromolecules
2002, 35, 7169-7171. (b) Tong, H.; Wang, L.; Jing, X.; Wang,
F. Macromolecules 2003, 36, 2584-2586. (c) Lee, T. S.; Yang,
C.; Kim, J. L.; Lee, J.-K.; Park, W. H.; Won, Y. J. Polym. Sci.,
Part A: Polym. Chem. 2002, 40, 1831-1837.