9
890
P. Chambel et al. / Tetrahedron 62 (2006) 9883–9891
5. Klixbull, U.; Bundgaard, H. Int. J. Pharm. 1984, 20, 273–284.
4
.4. Computational details
6
. Rasmussen, G. J.; Bundgaard, H. Int. J. Pharm. 1991, 71,
45–53.
3
0
The semiempirical Austin Model 1, AM1, and the density-
functional theory, DFT, based B3LYP methods have
been used as included in the Gaussian 98 computer code.
3
1–33
7. Rasmussen, G. J.; Bundgaard, H. Int. J. Pharm. 1991, 76,
113–122.
3
4
These two methods have been parameterized in order to re-
produce experimentally measured molecular properties. The
simplest AM1 method is based on the neglect of differential
diatomic overlap formalism in which various Fock matrix el-
ements are set to zero or use parameters optimized to repro-
duce various properties such as molecular geometries and
standard gas-phase enthalpies of formation. This approach
is an evolution of the older Modified Neglect of Differential
Overlap, MNDO, method where some deficiencies, such as
poor reproduction of hydrogen bonds and too high reaction
activation energies, have been corrected. In the hybrid
B3LYP method, three parameters of the exchange functional
were optimized empirically in order to reproduce experi-
mental thermochemical data. The optimum mixing was
found forw20% Fock exchange in the exchange functional.
In the B3LYP calculations reported here, the atomic elec-
tronic density has been described by the standard 6-31G(d)
basis set.
8. Bak, A.; Fich, M.; Larsen, B. D.; Frokjaer, S.; Friis, G. J. Eur. J.
Pharm. Sci. 1999, 7, 317–323.
9. Jusko, W. J.; Lewis, G. P. J. Pharm. Sci. 1973, 62, 69–76.
10. Larsen, S. W.; Sidenius, M.; Ankersen, M.; Larsen, C. Eur. J.
Pharm. Sci. 2003, 20, 233–240.
11. Gomes, P.; Ara ꢀu jo, M. J.; Rodrigues, M.; Vale, N.; Azevedo, Z.;
Iley, J.; Chambel, P.; Morais, J.; Moreira, R. Tetrahedron 2004,
60, 5551–5562.
12. Ara ꢀu jo, M. J.; Bom, J.; Capela, R.; Casimiro, C.; Chambel, P.;
Gomes, P.; Iley, J.; Lopes, F.; Morais, J.; Moreira, R.; de
Oliveira, E.; do Ros ꢀa rio, V.; Vale, N. J. Med. Chem. 2005,
48, 888–897.
13. Baker, J. K.; Bedford, J. A.; Clark, A. M.; McChesney, J. D.
Pharm. Res. 1984, 1, 98–100.
14. Mihaly, G. W.; Ward, S. A.; Edwards, G.; Orme, M. L’E.;
Breckenridge, A. M. Br. J. Clin. Pharmacol. 1984, 17, 441–
446.
15. Brossi, A.; Millet, P.; Landau, I.; Bembenek, M. E.; Abell,
C. W. FEBS Lett. 1987, 214, 291–294.
Transition states were localized using the STQN method,
QST3 and IRC calculations were performed in order to be
certain that these TS structures yield the closed-ring (reac-
tants) and open-ring (products) structures. Further, reactants
and products did not present any imaginary frequency while
only a single imaginary frequency was calculated for transi-
tion states. All figures with molecular structures have been
16. Constantino, L.; Paix ~a o, P.; Moreira, R.; Portela, M. J.;
Ros ꢀa rio, V. E.; Iley, J. Exp. Toxicol. Pathol. 1999, 51, 299–303.
17. Brueckner, R. P.; Ohrt, C.; Baird, J. K.; Milhous, W. K. 8-
Aminoquinolines. In Antimalarial Chemotherapy; Rosenthal,
P. J., Ed.; Humana: Totowa, NJ, 2001; pp 123–151.
18. Laidler, K. Chemical Kinetics; Tata McGraw-Hill: New Delhi,
1978; pp 321.
19. Jencks, W. P.; Regenstein, J. Ionization Constants of Acids
and Bases. In Handbook of Chemistry and Molecular
Biology, 3rd ed.; Fasman, G. D., Ed.; CRC: Cleveland, OH,
1976; Vol. 1, p 305.
3
5
36
obtained with the XCrysDen and Molden programs.
Acknowledgements
2
a
0. Perrin, D. D.; Dempsey, B.; Serjeant, E. P. pK Prediction for
The authors thank Funda c¸ ~a o para a Ci ^e ncia e Tecnologia
Organic Acids and Bases; Chapman and Hall: London, 1981;
pp 109.
(
Portugal) for financial support through research project
POCTI/FCB/39218/2001 and pluriannual funding to re-
search units CECF and CIQUP. J.R.B.G. and P.C. thank
F.C.T. and the European Social Fund (ESF) under the
3rd Community Support Framework (CSF) for the award,
respectively, of a post-doctoral fellowship (SFRH/BPD/
21. Bundgaard, H.; Johansen, M. Arch. Pharm. Chem. Sci. Ed.
1980, 8, 29–52.
1
2
values for the dissociation of amides R CONHR can
22. The pK
a
P
be calculated using the equation pK
The difference between the amide derived from primaquine
2
and those from peptides is in the R group. For simplicity,
a
¼22ꢂ3.1 s* (Ref. 20).
1
2
1582/2002) and a Ph.D. research grant (SFRH/BD/11582/
002).
2
we considered the R group for primaquine to be butyl
(
s* can be estimated to be 0.84); thus, the difference in pK is
s*ꢂ0.23) and for the peptides to be MeNHCOCH
2
(for which
a
Supplementary data
3.1(0.84ꢂ(ꢂ0.23))z3.3.
2
3. Lopes, F.; Moreira, R.; Iley, J. J. Chem. Soc., Perkin Trans. 2
1999, 431–440.
Table S1 with the optimized Cartesian coordinates and Table
S2 with the energies of all compounds. Supplementary data
24. Homer, R. B.; Johnson, C. D. Acid–Base and Complexing
Properties of Amides. In The Chemistry of Amides; Zabicky,
J., Ed.; Interscience: London, 1970; p 187.
2
5. Loudon, G. M.; Almond, M. R.; Jacob, J. N. J. Am. Chem. Soc.
981, 103, 4508–4515.
1
References and notes
26. Brown, H. C.; Fletcher, R. S.; Johannesen, R. B. J. Am. Chem.
Soc. 1951, 73, 212–221.
1
2
. Zehavi, U.; Ben-Ishai, D. J. Org. Chem. 1961, 26, 1097–1101.
. Panetta, C. A.; Pesh-Imam, M. J. Org. Chem. 1972, 37, 302–
27. Brown, H. C.; Ham, G. J. Am. Chem. Soc. 1956, 78, 2735–
2739.
3
04.
. Hardy, P. M.; Samworth, D. J. J. Chem. Soc., Perkin Trans. 1
977, 1954–1960.
. Klixbull, U.; Bundgaard, H. Int. J. Pharm. 1985, 23, 163–173.
28. Masson, E.; Leroux, F. Helv. Chim. Acta 2005, 88, 1375–1386.
29. Wolf, J. F.; Staley, R. H.; Koppel, I.; Taagepera, M.; McIver,
R. T., Jr.; Beauchamp, J. L.; Taft, R. W. J. Am. Chem. Soc.
1977, 99, 5417–5429.
3
4
1