ORGANIC
LETTERS
2
006
Vol. 8, No. 23
211-5213
Direct Palladium-Catalyzed
Ortho-Arylation of Benzylamines
5
Anna Lazareva and Olafs Daugulis*
Department of Chemistry, UniVersity of Houston, Houston, Texas 77204
Received August 2, 2006
ABSTRACT
Unsubstituted benzylamines and N-methylbenzylamine can be ortho-arylated under palladium catalysis at 130
presence of trifluoroacetic acid and silver acetate.
°C. The reactions require the
Probably the most ubiquitous functional group in organic
chemistry is the C-H bond. The use of this group in selective
organic transformations offers advantages with respect to the
length of synthetic transformations and the availability of
starting materials. As a consequence, the development of
selective C-H bond functionalization has become a topic
developed a widely applicable method that allows the
arylation of various substrates functionalized with directing
groups. The reactions involve heating of an aryl iodide, the
6
substrate, and silver acetate in a carboxylic acid or without
solvent. Unique functional group tolerance is observed;
bromide is always tolerated, and occasionally even iodide
substituents are compatible with the reaction conditions.
1
of intense interest. Despite many recent successes, there are
still problems with respect to the selectivity and generality
6
a
6b
Acylated anilines, 2-aryl-, and alkylpyridines have been
shown to be reactive under these conditions. If an additional
of such processes. Only a handful of examples of unactivated
3
(
not benzylic or R to heteroatoms) sp C-H bond conver-
(3) (a) Okazawa, T.; Satoh, T.; Miura, M.; Nomura, M. J. Am. Chem.
sions to C-C bonds have been demonstrated in the litera-
Soc. 2002, 124, 5286. (b) Kobayashi, K.; Sugie, A.; Takahashi, M.; Masui,
K.; Mori, A. Org. Lett. 2005, 7, 5083. (c) Park, C.-H.; Ryabova, V.; Seregin,
I. V.; Sromek, A. W.; Gevorgyan, V. Org. Lett. 2004, 6, 1159. (d) Bressy,
C.; Alberico, D.; Lautens, M. J. Am. Chem. Soc. 2005, 127, 13148. (e)
Deprez, N. R.; Kalyani, D.; Krause, A.; Sanford, M. S. J. Am. Chem. Soc.
2
ture. An improvement in the generality of intermolecular
C-H activation reactions is desirable. There are a few
substrate classes where remarkable achievements in this
method have been demonstrated. For example, electron-rich
heterocycles can be both arylated and alkenylated under a
variety of conditions, allowing direct functionalization of
2006, 128, 4972. (f) Campeau, L.-C.; Rousseaux, S.; Fagnou, K. J. Am.
Chem. Soc. 2005, 127, 18020.
(4) (a) Oi, S.; Fukita, S.; Hirata, N.; Watanuki, N.; Miyano, S.; Inoue,
Y. Org. Lett. 2001, 3, 2579. (b) Ackermann, L. Org. Lett. 2005, 7, 3123.
(
(
c) Oi, S.; Aizawa, E.; Ogino, Y.; Inoue, Y. J. Org. Chem. 2005, 70, 3113.
d) Tremont, S. J.; Rahman, H. U. J. Am. Chem. Soc. 1984, 106, 5759. (e)
3
these important substrates. Additionally, pyridines, oxazo-
Kametani, Y.; Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000,
1, 2655. (f) Kalyani, D.; Deprez, N. R.; Desai, L. V.; Sanford, M. S. J.
Am. Chem. Soc. 2005, 127, 7330. (g) Satoh, T.; Kawamura, Y.; Miura, M.;
Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740. (h) Chen, X.;
Li, J.-J.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006,
lines, anilides, and phenols are among substrates that may
be arylated or otherwise functionalized. Recently, several
4
4
examples of the alkylation or arylation of compounds without
5
strong directing groups have been demonstrated. We have
128, 78.
(
5) (a) Lafrance, M.; Rowley, C. N.; Woo, T. K.; Fagnou, K. J. Am.
(
1) Reviews: (a) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97,
Chem. Soc. 2006, 128, 8754. (b) Faccini, F.; Motti, E.; Catellani, M. J.
Am. Chem. Soc. 2004, 126, 78. (c) Dong, C.-G.; Hu, Q.-S. Angew. Chem.,
Int. Ed. 2006, 45, 2289. (d) Campo, M. A.; Huang, Q.; Yao, T.; Tian, Q.;
Larock, R. C. J. Am. Chem. Soc. 2003, 125, 11506. (e) Campeau, L.-C.;
Thansandote, P.; Fagnou, K. Org. Lett. 2005, 7, 1857. (f) Shi, Z.; He, C. J.
Am. Chem. Soc. 2004, 126, 13596.
(6) (a) Daugulis, O.; Zaitsev, V. G. Angew. Chem., Int. Ed. 2005, 44,
4046. (b) Shabashov, D.; Daugulis, O. Org. Lett. 2005, 7, 3657. (c) Zaitsev,
V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. 2005, 127, 13154.
2
879. (b) Kakiuchi, F.; Chatani, N. AdV. Synth. Catal. 2003, 345, 1077. (c)
Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. (d) Dyker, G. Angew.
Chem., Int. Ed. 1999, 38, 1698.
(
2) (a) Dyker, G. Angew. Chem., Int. Ed. Engl. 1994, 33, 103. (b) Barder,
T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc.
005, 127, 4685. (c) Baudoin, O.; Herrbach, A.; Gueritte, F. Angew. Chem.,
2
Int. Ed. 2003, 42, 5736. (d) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am.
Chem. Soc. 2006, 128, 12634.
1
0.1021/ol061919b CCC: $33.50
© 2006 American Chemical Society
Published on Web 10/14/2006