Crossed-Beam Investigation of O(3P) + C2H5 f C2H4 + OH
J. Phys. Chem. A, Vol. 114, No. 14, 2010 4895
29, 1247. (e) Reid, J. P.; Marcy, T. P.; Kuehn, S.; Leone, S. R. J. Chem.
Phys. 2000, 113, 4572. (f) Herron, J. T. J. Phys. Chem. Ref. Data 1988,
17, 967.
(4) Harding, L. B.; Klippenstein, S. J.; Georgievskii, Y. Proc. Combust.
Inst. 2005, 30, 985.
(5) (a) Yang, Y.; Weijun, Z.; Xiaoming, G.; Shixin, P.; Jie, S.; Wei,
H.; Jun, Q. Chinese J. Chem. Phys. 2005, 18, 515. (b) Gupta, A.; Singh,
R. P.; Singh, V. B.; Mishra, B. K.; Sathyamuryhy, N. J. Chem. Sci. 2007,
119, 457.
(6) (a) Kwon, H. C.; Park, J. H.; Lee, H.; Kim, H. K.; Choi, Y. S.;
Choi, J. H. J. Chem. Phys. 2002, 116, 2675. (b) Park, J. H.; Lee, H.; Kwon,
H. C.; Kim, H. K.; Choi, Y. S.; Choi, J. H. J. Chem. Phys. 2002, 117,
2017. (c) Lee, H.; Joo, S. K.; Kwon, L. K.; Choi, J. H. J. Chem. Phys.
2003, 119, 9337. (d) Lee, H.; Joo, S. K.; Kwon, L. K.; Choi, J. H. J. Chem.
Phys. 2004, 120, 2215. (e) Joo, S. K.; Kwon, L. K.; Lee, H.; Choi, J. H.
J. Chem. Phys. 2004, 120, 7976. (f) Nam, M. J.; Youn, S. E.; Li, L.; Choi,
J. H. J. Chem. Phys. 2005, 123, 211105. (g) Choi, J. H.; Nam, M. J.; Youn,
S. E. ChemPhysChem. 2006, 7, 2526. (h) Lee, H.; Nam, M. J.; Choi, J. H.
J. Chem. Phys. 2006, 124, 044311. (i) Park, J. H.; Lee, H.; Choi, J. H.
J. Chem. Phys. 2003, 119, 8966.
(7) Leonori, F.; Balucani, N.; Capozza, G.; Segoloni, E.; Stranges, D.;
Casavecchia, P. Phys. Chem. Chem. Phys. 2007, 9, 1307.
(8) Kohn, D. W.; Clauberg, H.; Chen, P. ReV. Sci. Instrum. 1992, 63,
4003.
(9) (a) Kleimermanns, K.; Luntz, A. C. J. Chem. Phys. 1982, 77, 3533.
(b) Andresen, P.; Luntz, A. C. J. Chem. Phys. 1980, 72, 5842.
(10) Jung, S. H.; Park, Y. P.; Kang, K. W.; Choi, J. H. J. Chem. Phys.,
submitted for publication.
in terms of the direct abstraction process as a major channel.
Nevertheless, the minor but extraordinarily hot rotational
distribution of high-N′′ components implies that some fraction
of the reactants proceeds through an indirect short-lived addition-
complex forming process, such as eINT3. A similar abstraction
mechanism was also proposed in the infrared emission study
of OH produced in the reaction of O(3P) + C2H5 performed by
Leone and co-workers.2 Although clear rotational-state distribu-
tion in each vibrational state was not characterized due in part
to the error (10-50%) associated with the each rotational level
population, the inverted OH vibrational population was rational-
ized through a direct abstraction mechanism.
The competing reaction pathways of the title reaction stand
in sharp contrast with the reaction mechanisms of O(3P) +
saturated hydrocarbon molecules and an unsaturated propargyl
radical.6,9 The former proceeds through the well-known collinear
abstraction mechanism, producing the vibrationally hot and
rotationally cold OH products. The latter, with the high entrance
barrier, has only been described in terms of the addition pathway
in the low collision energy regime. Similar reaction mechanisms
have been observed in the reactions of O(3P) with allyl (C3H5)
and tert-butyl (t-C4H9), where both facile H-atom abstraction
and barrierless addition pathways result in the formation of
stable allene (C3H4) and isobutene (i-C4H8) + OH products.6
As demonstrated above, the work herein represents a step
forward in understanding radical-radical reactions at the
molecular level. Extensive crossed-beam investigations com-
bined with ab initio calculations on several radical-radical
reactions are currently being conducted. It is the hope of the
authors that the gas-phase reaction dynamics studies presented
herein will provide valuable mechanistic insights into the
unexplored elementary oxidation reactions of various hydro-
carbon radicals.
(11) Renaud, R.; Leitch, L. C. Can. J. Chem. 1954, 32, 545.
(12) (a) Becke, A. D. J. Chem. Phys. 1992, 96, 2155. (b) Becke, A. D.
J. Chem. Phys. 1993, 96, 1372. (c) Becke, A. D. J. Chem. Phys. 1993, 98,
5648.
(13) Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A.
J. Chem. Phys. 1997, 106, 1063.
(14) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.;
Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.;
Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski,
J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz,
J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.;
Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham,
M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill,
P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez,
C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03; Gaussian,
Inc.: Pittsburgh, PA, 2003.
(15) (a) Dieke, G. H.; Crosswhite, H. M. J. Quant. Spectrosc. Radiat.
Transfer 1962, 2, 97. (b) Dimpfl, W. L.; Kinsey, J. L. J. Quant. Spectrosc.
Radiat. Transfer 1979, 21, 233. (c) Chidsey, I. L.; Crosley, D. R. J. Quant.
Spectrosc. Radiat. Transfer 1980, 23, 187. (d) Luque, J.; Crosley, D. R.
LIFBASE: Database and Simulation Program (v 2.0), SRI International
Report MP 99-009, 1999.
Acknowledgment. This work was supported by a National
Research Foundation of Korea (NRF) grant funded by the Korea
government (MEST) (No. M10500000023-06J0000). We thank
Professor I. Fischer and Dr. B. Noller for their helpful discussion
in synthesizing the precursor.
References and Notes
(1) Choi, J. H. Int. ReV. Phys. Chem. 2006, 25, 613.
(2) Lindner, J.; Loomis, R. A.; Klaassen, J. J.; Leone, S. R. J. Chem.
Phys. 1998, 108, 1944.
(3) (a) Baulch, D. L.; Bowman, C. T.; Cobos, C. J.; Cox, R. A.; Just,
Th.; Kerr, J. A.; Pilling, M. J.; Stocker, D.; Troe, J.; Tsang, W.; Walker,
R. W.; Warnatz, J. J. Phys. Chem. Ref. Data 2005, 34, 757. (b) Slagle,
I. R.; Sarzynski, D.; Gutman, D.; Miller, J. A.; Melius, C. F. J. Chem.
Soc., Faraday Trans. 2 1988, 84, 49. (c) Hoyermann, K.; Olzmann, M.;
Seeba, J.; Viskolcz, B. J. Phys. Chem. A 1999, 103, 5692. (d) Hack, W.;
Hoyermann, K.; Olzmann, M.; Zeuch, T. Proc. Combust. Institute 2002,
(16) (a) Zhu, R. S.; Park, J.; Lin, M. C. Chem. Phys. Lett. 2005, 408,
25. (b) Senosiain, J. P.; Klippenstein, S. J.; Miller, J. A. J. Phys. Chem. A
2006, 110, 6960. (c) Xu, Z. F.; Xu, K.; Lin, M. C. ChemPhysChem 2009,
10, 972.
(17) Bear, T.; Hase, W. L. Unimolecular Reactions Dynamics; Oxford
University Press: New York, 1996.
(18) Holbrook, K. A.; Pilling, M. J.; Robertson, S. H. Unimolecular
Reactions: John Wiley & Sons: New York, 1996.
JP910615Y