Inorganic Chemistry
Article
Methylammonium Lead Halide Perovskites. J. Phys. Chem. Lett. 2017,
(38) Shenderovich, I. G.; Buntkowsky, G.; Schreiber, A.; Gedat, E.;
Sharif, S.; Albrecht, J.; Golubev, N. S.; Findenegg, G. H.; Limbach, H.-
H. Pyridine-15 Na mobile NMR sensor for surface acidity and surface
defects of mesoporous silica. J. Phys. Chem. B 2003, 107 (43), 11924−
11939.
(39) Gedat, E.; Schreiber, A.; Albrecht, J.; Emmler, T.;
Shenderovich, I.; Findenegg, G.; Limbach, H.-H.; Buntkowsky, G.
8
(
(1), 61−66.
20) Even, J.; Pedesseau, L.; Katan, C. Analysis of Multivalley and
Multibandgap Absorption and Enhancement of Free Carriers Related
to Exciton Screening in Hybrid Perovskites. J. Phys. Chem. C 2014,
1
(
18 (22), 11566−11572.
21) Gottesman, R.; Haltzi, E.; Gouda, L.; Tirosh, S.; Bouhadana, Y.;
2
H-Solid-State NMR Study of Benzene-d 6 Confined in Mesoporous
Silica SBA-15. J. Phys. Chem. B 2002, 106 (8), 1977−1984.
40) Rossler, E.; Taupitz, M.; Borner, K.; Schulz, M.; Vieth, H. M. A
Zaban, A.; Mosconi, E.; De Angelis, F. Extremely Slow Photo-
conductivity Response of CH NH PbI Perovskites Suggesting
3
3
3
(
̈
̈
Structural Changes under Working Conditions. J. Phys. Chem. Lett.
014, 5 (15), 2662−2669.
22) Chen, S.; Shang, R.; Wang, B. W.; Wang, Z. M.; Gao, S. An A-
simple method analyzing 2H nuclear magnetic resonance line shapes
to determine the activation energy distribution of mobile guest
molecules in disordered systems. J. Chem. Phys. 1990, 92 (10), 5847−
2
(
Site Mixed-Ammonium Solid Solution Perovskite Series of [(NH2-
5
(
855.
NH ) (CH NH ) ][Mn(HCOO) ](x= 1.00−0.67). Angew. Chem.,
3
x
3
3
1−x
3
41) Zhang, W.; Cai, Y.; Xiong, R. G.; Yoshikawa, H.; Awaga, K.
Int. Ed. 2015, 54 (38), 11093−11096.
Exceptional Dielectric Phase Transitions in a Perovskite-Type Cage
(
23) Jain, P.; Dalal, N. S.; Toby, B. H.; Kroto, H. W.; Cheetham, A.
Compound. Angew. Chem., Int. Ed. 2010, 49 (37), 6608−6610.
K. Order− disorder antiferroelectric phase transition in a hybrid
inorganic− organic framework with the perovskite architecture. J. Am.
Chem. Soc. 2008, 130 (32), 10450−10451.
(
42) Chan, J. C. C.; Au-Yeung, S. C. F. Cobalt-59 NMR
Spectroscopy. In Annual Reports on NMR Spectroscopy; Elsevier,
000; Vol. 41, pp 1−54..
43) Godbout, N.; Oldfield, E. Density functional study of cobalt-59
2
(
(
24) Kundys, B.; Lappas, A.; Viret, M.; Kapustianyk, V.; Rudyk, V.;
Semak, S.; Simon, C.; Bakaimi, I. Multiferroicity and hydrogen-bond
ordering in (C H NH ) CuCl featuring dominant ferromagnetic
nuclear magnetic resonance chemical shifts and shielding tensor
elements in Co (III) complexes. J. Am. Chem. Soc. 1997, 119 (34),
2
5
3
2
4
interactions. Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 81 (22),
24434.
25) Liao, W.-Q.; Zhang, Y.; Hu, C.-L.; Mao, J.-G.; Ye, H.-Y.; Li, P.-
8
(
065−8069.
2
(
44) Zhou, P.; Au-Yeung, S. C.; Xu, X.-P. A DFT and 59Co Solid-
State NMR study of the Second-Sphere Interaction in Polyammo-
nium Macrocycles Cobalt Cyanide Supercomplexes. J. Am. Chem. Soc.
F.; Huang, S. D.; Xiong, R.-G. A lead-halide perovskite molecular
ferroelectric semiconductor. Nat. Commun. 2015, 6, 7338.
1
(
999, 121 (5), 1030−1036.
(
26) Polyakov, A. O.; Arkenbout, A. H.; Baas, J.; Blake, G. R.;
45) Crewdson, P.; Bryce, D. L.; Rominger, F.; Hofmann, P.
Meetsma, A.; Caretta, A.; van Loosdrecht, P. H.; Palstra, T. T.
Coexisting ferromagnetic and ferroelectric order in a CuCl4-based
organic−inorganic hybrid. Chem. Mater. 2012, 24 (1), 133−139.
Application of Ultrahigh-Field 59Co Solid-State NMR Spectroscopy
in the Investigation of the 1, 2-Polybutadiene Catalyst [Co(C H )-
8
13
(
C H )]. Angew. Chem., Int. Ed. 2008, 47 (18), 3454−3457.
4
6
(
27) Shi, C.; Yu, C. H.; Zhang, W. Predicting and screening
59
(
46) Nielsen, U. G.; Jakobsen, H. J.; Skibsted, J. Co chemical shift
dielectric transitions in a series of hybrid organic−inorganic double
perovskites via an extended tolerance factor approach. Angew. Chem.,
Int. Ed. 2016, 55 (19), 5798−5802.
anisotropy and quadrupole coupling for K Co(CN) from MQMAS
3
6
and MAS NMR spectroscopy. Solid State Nucl. Magn. Reson. 2001, 20
(
1−2), 23−34.
(
28) Wang, X.-Y.; Gan, L.; Zhang, S.-W.; Gao, S. Perovskite-like
(47) Ooms, K. J.; Terskikh, V. V.; Wasylishen, R. E. Ultrahigh-field
5
9
−
+
metal formates with weak ferromagnetism and as precursors to
solid-state Co NMR studies of Co(C B H ) and Co(C H )
2 9 11 2 5 5 2
amorphous materials. Inorg. Chem. 2004, 43 (15), 4615−4625.
salts. J. Am. Chem. Soc. 2007, 129 (21), 6704−6705.
(
29) Zhao, X.-H.; Huang, X.-C.; Zhang, S.-L.; Shao, D.; Wei, H.-Y.;
Wang, X.-Y. Cation-dependent magnetic ordering and room-temper-
ature bistability in azido-bridged perovskite-type compounds. J. Am.
Chem. Soc. 2013, 135 (43), 16006−16009.
(
30) Chen, S.; Shang, R.; Hu, K.-L.; Wang, Z.-M.; Gao, S.
2
+
2+
2+
2+
[
NH NH ][M(HCOO) ](M= Mn , Zn , Co and Mg ):
2 3 3
structural phase transitions, prominent dielectric anomalies and
negative thermal expansion, and magnetic ordering. Inorg. Chem.
Front. 2014, 1 (1), 83−98.
(
31) Schmidt-Rohr, K.; Spiess, H. W. Multidimensional Solid-State
NMR and Polymers; Academic Press: London, 1994.
32) Hansen, M. R.; Graf, R.; Spiess, H. W. Solid-State NMR in
(
Macromolecular Systems: Insights on How Molecular Entities Move.
Acc. Chem. Res. 2013, 46 (9), 1996−2007.
(
33) Yao, Y.; Chen, Q. From Helical Jump to Chain Diffusion: Solid-
State NMR Study of Chain Dynamics in Semi-Crystalline Polymers.
In Annual Reports on NMR Spectroscopy; Elsevier, 2010; Vol. 69, pp
1
99−224.
34) Shao, X. D.; Zhang, X.; Shi, C.; Yao, Y. F.; Zhang, W. J. A. S.
Switching dielectric constant near room temperature in a molecular crystal
015, 2 (5), 1500029.
35) Shi, C.; Zhang, X.; Cai, Y.; Yao, Y. F.; Zhang, W. J. A. C. I. E.
Angew. Chem., Int. Ed. 2015, 54 (21), 6206−6210.
36) Shi, C.; Zhang, X.; Yu, C. H.; Yao, Y. F.; Zhang, W. Geometric
(
2
(
(
isotope effect of deuteration in a hydrogen-bonded host−guest
crystal. Nat. Commun. 2018, 9 (52), 481.
(
37) Jaeger, C.; Hemmann, F. EASY: a simple tool for
simultaneously removing background, deadtime and acoustic ringing
in quantitative NMR spectroscopy–part I: basic principle and
applications. Solid State Nucl. Magn. Reson. 2014, 57−58 (1), 22−28.
G
Inorg. Chem. XXXX, XXX, XXX−XXX