093101-3
Liu et al.
Appl. Phys. Lett. 91, 093101 ͑2007͒
in the weak internal interaction of Fe nanowires, which
might be another key factor for the spectra of Ј and Љ.
r
r
In summary, large-scale Fe nanowires were prepared by
a CVD method without using template. The resin composites
with Fe nanowires showed good EM wave absorbing char-
acteristics in the 5.6–18 GHz ͑G and X bands range͒. This
study demonstrated the possible application of producing
thin and light EM wave absorbers from Fe nanowires. By
comparing nanowires with micrometer wires or flakelike
samples, the different absorption properties mainly resulted
from the size effect of Fe on the frequency dependences of
relative permittivity and permeability on their resin
composites.
This work was supported by Grant-in-Aid for Scientific
Research No. 15205025 from the Ministry of Education, Sci-
ence, Sports, and Culture of Japan, and Industrial Technol-
ogy Research Grant Program in 2003 from New Energy and
Industrial Technology Development Organization ͑NEDO͒
of Japan.
1Y. Naito and K. Suetaki, IEEE Trans. Microwave Theory Tech. 19, 65
͑1971͒.
2J. L. Wallace, IEEE Trans. Magn. 29, 4209 ͑1993͒.
3P. Toneguzzo, G. Viau, O. Acher, F. Fievet-Vincent, and F. Fievet,
Adv. Mater. ͑Weinheim, Ger.͒ 10, 1032 ͑1998͒.
4A. Butera, J. N. Zhou, and J. A. Barnard, J. Appl. Phys. 87, 5627 ͑2000͒.
5J. L. Snoek, Physica ͑Amsterdam͒ 14, 207 ͑1948͒.
6S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85,
4636 ͑1999͒.
7D. Rousselle, A. Berthault, O. Acher, J. P. Bouchaud, and P. G. Zerah,
J. Appl. Phys. 74, 475 ͑1993͒.
8M. Sato, S. Yoshida, E. Sugawara, and Y. Shimada, J. Magn. Soc. Jpn. 20,
4214 ͑1996͒.
FIG. 4. Frequency dependences of the reflection loss ͑RL͒ for the resin
composites of 29 vol % Fe: ͑a͒ flakelike samples, ͑b͒ microwires ͑8–12 m
in diameter͒, and ͑c͒ nanowires at different thicknesses in the 0.05–18 GHz
range.
9M. Matsumoto and Y. Miyata, IEEE Trans. Magn. 33, 523 ͑1997͒.
10L. Olmedo, G. Chateau, C. Deleuze, and J. L. Forveille, J. Appl. Phys. 73,
6992 ͑1993͒.
11G. Viau, F. Ravel, O. Acher, F. Fievet-Vincent, and F. Fievet, J. Appl.
Phys. 76, 6570 ͑1994͒.
12L. W. Deng, J. J. Jiang, S. C. Fan, Z. K. Feng, W. Y. Xie, X. C. Zhang, and
H. H. He, J. Magn. Magn. Mater. 264, 50 ͑2003͒.
the EM wave absorbing characteristics strongly depend on
the magnetic resonance of these composites. From the fre-
quency dependence of relative permeability for the resin
composites with Fe microwires ͑8–12 m in diameter͒ or
flakelike samples ͑Fig. 3͒, one can observe that the Ј and
13N. T. Rochman, K. Kawamoto, H. Sueyoshi, Y. Nakamura, and T. Nishida,
J. Mater. Process. Technol. 89, 367 ͑1999͒.
14M. Pardavi-Horvath and L. J. Swartzendruber, IEEE Trans. Magn. 35,
3502 ͑1999͒.
Љ values drastically decline with frequency, and no rmag-
15S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma,
H. Ota, Y. Houjou, and R. Sato, J. Alloys Compd. 330, 301 ͑2002͒.
16R. Che, L. Peng, X. Duan, Q. Chen, and X. Liang, Adv. Mater.
͑Weinheim, Ger.͒ 16, 401 ͑2004͒.
r
netic resonance peak is present in the 0.05–18 GHz range.
However, the Ј value gradually decreases with increasing
r
frequency and one magnetic resonance peak can be observed
in the 1.0–18 GHz range for the resin composites with Fe
nanowires. The above experimental results suggested that the
Fe wires with nanoscale diameter have significant effect for
reducing the eddy current loss and possess a remarkable fea-
ture for EM wave absorption in the 1.0–18 GHz range. On
the other hand, the Fe nanowires are isolated by the coating
of epoxy resin, therefore, such composite morphology results
17H. M. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W.
Yoo, and A. J. Epstein, Appl. Phys. Lett. 26, 589 ͑2004͒.
18H. M. Musal, Jr. and H. T. Hahn, IEEE Trans. Magn. 25, 3851 ͑1989͒.
19H. E. Swanson, R. K. Fuyat, and G. M. Ugrinic, JCPDS, International
Center for Diffraction Data, Card No. 6-0696 ͑1955͒.
20S. Kim, S. Kim, Y. Yoon, and K. Lee, J. Appl. Phys. 97, 10F905 ͑2005͒.
21H. J. Kwon, J. Y. Shin, and J. H. Oh, J. Appl. Phys. 75, 6109 ͑1994͒.
22P. Singh, V. K. Babbar, A. Razdan, R. K. Puri, and T. C. Goel, J. Appl.
Phys. 87, 4362 ͑2000͒.
On: Thu, 08 May 2014 18:12:53