Inorganic Chemistry
Communication
8569−8580. (g) Kopylovich, M. N.; Kirillov, A. M.; Tronova, E. A.;
Haukka, M.; Kukushkin, V. Y.; Pombeiro, A. J. L. Eur. J. Inorg. Chem.
2010, 2425−2432.
(4) (a) Shchegol’kov, E. V.; Burgart, Y. V.; Saloutin, V. I. J. Fluorine
Chem. 2007, 128, 779−788. (b) Fomicheva, E. B.; Belskii, V. K.;
Panova, G. V. Koord. Khim. 1989, 15, 937−941. (c) Fomicheva, E. B.;
Belskii, V. K.; Panova, G. V. Koord. Khim. 1989, 15, 209−213.
(d) Fomicheva, E. B.; Belskii, V. K.; Panova, G. V. Zh. Obshch. Khim.
1986, 56, 607−613.
spectrum indicated the formation of nickel metal. Hence, 6 is
reduced rapidly by hydrazine, and this chemistry may lead to a
nickel ALD process. Previous reports have shown that solution
reactions are useful in screening precursor pairs for transition-
metal ALD processes.8b,c,12
The present study demonstrates that metal complexes
containing 1,2,5-triazapentadienyl ligands are easily prepared.
The synthetic approach to the ligand precursors is inherently
flexible and should allow incorporation of a broad range of
ligand-core nitrogen and carbon atom substituents. Complexes
containing 1,2,5-triazapentadienyl ligands should be electroni-
cally distinct from those with β-diketiminate and 1,3,5-
triazapentadienyl ligands because the 1-nitrogen atom is
bonded to an electronegative nitrogen atom in the former. In
addition to the unique characteristics of 1,2,5-triazapentadienyl
ligands, we have documented that first-row mid-to-late-
transition-metal(II) complexes are monomeric and volatile
and have very high thermal decomposition temperatures. As a
comparison, the nickel(II) amidinate complex Ni-
(iPrNCMeNiPr)2 undergoes solid-state decomposition at
about 180 °C,13,14 whereas the nickel complex 1 decomposes
at 290 °C. Additionally, 1−9 do not contain oxygen atoms and
have only metal−nitrogen bonds, which tend to be more
reactive than metal−oxygen bonds in ALD film growth
processes.11,13 These properties make 1−9 very attractive
precursor candidates for use in ALD, as exemplified by the
rapid reduction of 6 to nickel metal upon treatment with
hydrazine. Film growth studies with 6 and related complexes
will be reported separately.
(5) (a) Uraev, A. I.; Korshunov, O. Y.; Nivorozhkin, A. L.;
Antsyshkina, A. S.; Sadikov, G. G.; Nevodchikov, V. I.; Sergienko, V.
S.; Garnovsky, A. D. Russ. J. Inorg. Chem. 2009, 54, 521−529. (b) El-
Ghar, M. F. A.; El-Ghani, N. T. A.; El-Borady, O. M. J. Coord. Chem.
2008, 61, 1184−1199. (c) Moreno, J. M.; Ruiz, J.; Dominguez-Vera, J.
M.; Colacio, E.; Galisteo, D.; Kivekas, R. Polyhedron 1994, 13, 203−
̈
207. (d) Nivorozhkin, A. L.; Toftlund, H.; Nivorozhkin, L. E.;
Kamenetskaya, I. A.; Antsishkina, A. S.; Porai-Koshits, M. A. Transition
Met. Chem. 1994, 19, 319−324. (e) Krol, I. A.; Starikova, Z. A.;
Makarevich, S. S.; Krasikov, A. Y.; Dziomko, V. M.; Khodas, A. V.
Kristallografiya 1992, 37, 373−381. (f) Krol, I. A.; Starikova, Z. A.;
Polyakova, I. N.; Ruchkina, G. N.; Dziomko, V. M. Kristallografiya
1991, 36, 1172−1178. (g) Colacio, E.; Costes, J.-P.; Kivekas, R.;
̈
Laurent, J.-P.; Ruiz, J.; Sundberg, M. Inorg. Chem. 1991, 30, 1475−
1479. (h) Ruiz, J.; Colacio, E.; Lopez-Gonzalez, J. D.; Sundberg, M.;
Kivekas, R. J. Chem. Soc., Dalton Trans. 1990, 2747−2752.
̈
́ ́
(i) Rodriguez, E. C.; Sanchez, J. R.; Lopez-Gonzalez, J. D.; Peregrin,
J. M. S.; Olivier, M. J.; Quiros, M.; Beauchamp, A. L. Inorg. Chim. Acta
1990, 171, 151−156. (j) Ravichandran, V.; Chacko, K. K.; Aoki, A.;
Yamazaki, H.; Ruiz-Sanchez, J.; Saurez-Verela, J.; Lopez-Gonzalez, J.
D.; Salas-Peregrin, J. M.; Colacio-Rodriguez, E. Inorg. Chim. Acta 1990,
173, 107−114.
(6) (a) Kim, H. Surf. Coat. Technol. 2006, 200, 3104−3111.
(b) Koike, J.; Wada, M. Appl. Phys. Lett. 2005, 87, 041911. (c) Vaz,
C. A. F.; Bland, J. A. C.; Lauhoff, G. Rep. Prog. Phys. 2008, 71, 056501.
(7) (a) Sedai, B.; Heeg, M. J.; Winter, C. H. J. Organomet. Chem.
2008, 693, 3495−3503. (b) Sedai, B.; Heeg, M. J.; Winter, C. H.
Organometallics 2009, 28, 1032−1038. (c) El-Kaderi, H. M.; Heeg, M.
J.; Winter, C. H. Polyhedron 2006, 25, 224−234. (d) El-Kaderi, H. M.;
Heeg, M. J.; Winter, C. H. Eur. J. Inorg. Chem. 2005, 2081−2088.
(8) (a) Thompson, J. S.; Zhang, L.; Wyre, J. P.; Brill, D.; Li, Z.
Organometallics 2012, 31, 7784−7892. (b) Vidjayacoumar, B.; Emslie,
D. J. H.; Clendenning, S. B.; Blackwell, J. M.; Britten, J. F.; Rheingold,
A. Chem. Mater. 2010, 22, 4844−4853. (c) Vidjayacoumar, B.; Emslie,
D. J. H.; Blackwell, J. M.; Clendenning, S. B.; Britten, J. F. Chem.
Mater. 2010, 22, 4854−4866. (d) Thompson, J. S.; Zhang, L.; Wyre, J.
P.; Brill, D. J.; Lloyd, K. G. Thin Solid Films 2009, 517, 2845−2850.
(e) Park, K.-H.; Bradley, A. Z.; Thompson, J. S.; Marshall, W. J. Inorg.
Chem. 2006, 45, 8480−8482. (f) Thompson, J. S.; Bradley, A. Z.; Park,
K.-H.; Dobbs, K. D.; Marshall, W. Organometallics 2006, 25, 2712−
2714.
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthetic procedures and analytical and spectroscopic data for
1−9 and X-ray crystallographic data for 6 and 7 in CIF format.
This material is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENTS
■
This work was supported by the U.S. National Science
Foundation (Grants CHE-0910475 and CHE-1212574) and
SAFC Hitech.
(9) Details of the synthetic work and characterization of the new
complexes are contained in the Supporting Information.
(10) (a) Khusniyarov, M. M.; Bill, E.; Weyhermuller, T.; Bothe, E.;
̈
Wieghardt, K. Angew. Chem., Int. Ed. 2011, 50, 1652−1655.
(b) Hitchcock, P. B.; Lappert, M. F.; Linnolahti, M.; Sablong, R.;
Severn, J. R. J. Organomet. Chem. 2009, 694, 667−676. (c) Healy, P.
C.; Bendall, M. R.; Doddrell, D. M.; Skelton, B. W.; White, A. H. Aust.
J. Chem. 1979, 32, 727−735.
REFERENCES
■
(1) (a) Bourget-Merle, L.; Lappert, M. F.; Severn, J. R. Chem. Rev.
2002, 102, 3031−3065. (b) Tsai, Y.-C. Coord. Chem. Rev. 2012, 256,
722−758.
(2) Kopylovich, M. N.; Pombeiro, A. J. L. Coord. Chem. Rev. 2011,
255, 339−355.
(3) Recent reports: (a) Bolano, T.; Gunnoe, T. B.; Sabat, M. Dalton
Trans. 2013, 42, 347−350. (b) Zhou, M.; Qiao, X.; Tong, H.; Gong,
T.; Fan, M.; Yang, Q.; Dong, Q.; Chao, J.; Guo, Z.; Liu, D. Inorg.
Chem. 2012, 51, 4925−4930. (c) Zhou, M.; Gong, T.; Qiao, X.; Tong,
H.; Guo, J.; Liu, D. Inorg. Chem. 2011, 50, 1926. (d) Kopylovich, M.
N.; Lasri, J.; da Silva, M. F. C. G.; Pombeiro, A. J. L. Eur. J. Inorg.
Chem. 2011, 377−383. (e) Flores, J. A.; Kobayashi, Y.; Rasika Dias, H.
V. Dalton Trans. 2011, 40, 10351−10359. (f) Rasika Dias, H. V.;
Flores, J. A.; Pellei, M.; Morresi, B.; Lobbia, G. G.; Singh, S.;
Kobayashi, Y.; Yousufuddin, M.; Santini, C. Dalton Trans. 2011, 40,
(11) Putkonen, M.; Niinisto, L. Top. Organomet. Chem. 2005, 9,
̈
125−145.
(12) Knisley, T. J.; Ariyasena, T. C.; Saly, M. J.; Winter, C. H. Chem.
Mater. 2011, 23, 4417−4419.
(13) Lim, B. S.; Rahtu, A.; Park, J.-S.; Gordon, R. G. Inorg. Chem.
2003, 42, 7951−7958.
(14) Karunarathne, M. C.; Knisley, T. J.; Tunstull, G. S.; Heeg, M. J.;
1184
dx.doi.org/10.1021/ic302787z | Inorg. Chem. 2013, 52, 1182−1184