Paper
RSC Advances
10 Y. A. Kumar and H.-J. Kim, New J. Chem., 2018, 42, 19971.
11 Y. Zheng, Z. Li, J. Xu, T. Wang and X. Liu, Nano Energy, 2015,
20, 94–107.
12 L. L. Zhang and X. Zhao, Chem. Soc. Rev., 2009, 38, 2520–
2531.
13 F. Markoulidis, C. Lei, C. Lekakou, D. Duff, S. Khalil,
B. Martorana and I. Cannavaro, Carbon, 2014, 68, 58–66.
14 D. Bhattacharjya, M.-S. Kim, T. S. Bae and J. S. Yu, J. Power
Sources, 2013, 244, 799–805.
15 J. Yin, D. Zhang, J. Zhao, X. Wang, H. Zhu and C. Wang,
Electrochim. Acta, 2014, 136, 504–512.
16 A. K. Yedluri and H.-J. Kim, Dalton Trans., 2018, 47, 15545–
15554.
17 W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen and X. Guan, Chem.
Mater., 2014, 26, 3418–3426.
18 W. Wei, L. Mi, Y. Gao, Z. Zheng, W. Chen and X. Guan, Chem.
Mater., 2014, 26, 3418–3426.
19 L. Mi, W. Wei, S. Huang, S. Cui, W. Zhang, H. Hou and
W. Chen, J. Mater. Chem. A, 2015, 3, 20973–20982.
20 W. Wei, S. Cui, L. Ding, L. Mi, W. Chen and X. Hu, ACS Appl.
Mater. Interfaces, 2017, 9, 40655–40670.
Conclusion
NiCo2O4 with a unique interconnected nanoplate-like structure
was fabricated on the surface of the highly conductive nickel
foam through a simple chemical bath deposition reaction. The
interconnected honeycomb nanostructure electrode can
enhance the pathway for electron transport originating from the
good electronic conductivity of the nickel foam. In addition, it
can reduce the transport distance of ions and enhance elec-
trode–electrolyte contact, which leads to higher material acti-
vation, and endow it with a high specic capacitance and
excellent long life cycling stability. The NiCo2O4 nanoplate
electrode delivered a high specic capacitance of 2791 F gꢀ1 at
a current density of 5 A gꢀ1 and exhibited a signicantly high
energy density of 63.8 W h kgꢀ1 and high power density of
654 W kgꢀ1, highlighting its potential for energy storage
applications. The nanoplate structure electrode material for
electrochemical capacitors displayed excellent cycling stability
of 99.1% retention aer 3000 cycles, even at a high current
density of 7 A gꢀ1. As a result, the NiCo2O4 electrode provides
a path for high-performance supercapacitors because of its low-
cost simple chemical bath deposition approach and environ-
mental friendliness.
21 F. Zou, X. Hu, Z. Li, L. Qie, C. Hu, R. Zeng, Y. Jiang and
Y. Huang, Adv. Mater., 2014, 26, 6622–6628.
22 Y. A. Kumar, S. S. Rao, D. Punnoose, C. V. Thulasivarma,
C. V. V. M. Gopi, K. Prabakar and H. J. Kim, R. Soc. Open
Sci., 2017, 4, 170427.
Conflicts of interest
23 N. Choudhary, C. Li, J. Moore, N. Nagaiah, L. Zhai, Y. Jung
and J. Thomas, Adv. Mater., 2017, 29, 1605336.
24 J. Zhao, Z. Li, M. Zhang, A. Meng and Q. Li, ACS Sustainable
Chem. Eng., 2016, 4, 3598–3608.
There are no conicts to declare.
Acknowledgements
25 L. Li, L. Tan, G. Li, Y. Zhang and L. Liu, Langmuir, 2017, 33,
12087–12094.
26 Y. A. Kumar, S. S. Rao, D. Punnoose, C. V. Thulasivarma,
C. V. V. M. Gopi, K. Prabakar and H. J. Kim, R. Soc. Open
Sci., 2017, 4, 170427.
This work was nancially supported by BK 21 PLUS, Creative
Human Resource Development Program for IT Convergence
(NRF-2015R1A4A1041584), Pusan National University, Busan,
South Korea. We would like to thank KBSI, Busan for SEM, TEM,
XRD, XPS and EDX analysis.
27 M. M. Yao, Z. H. Hu, Z. J. Xu, Y. F. Liu, P. P. Liu and Q. Zhang,
Electrochim. Acta, 2015, 158, 96–104.
28 P. Deng, H. Y. Zhang, Y. M. Chen, Z. H. Li, Z. K. Huang,
X. F. Xu, Y. Y. Li and Z. Shi, J. Alloys Compd., 2015, 644,
165–171.
References
1 J. L. Liu, J. Wang, C. H. Xu, H. Jiang, C. Z. Li, L. L. Zhang,
J. Y. Lin and Z. X. Shen, Adv. Sci., 2017, 1700322.
2 Y. A. Kumar and H.-J. Kim, Energies, 2018, 11, 3285.
3 S. G. Deng, D. L. Chao, Y. Zhong, Y. X. Zeng, Z. J. Yao,
29 H. Yi, H. W. Wang, Y. T. Jing, T. Q. Peng and X. F. Wang, J.
Power Sources, 2015, 285, 281–290.
J. Y. Zhan, Y. D. Wang, X. L. Wang, X. H. Lu, X. H. Xia and 30 A. C. Nwanya, S. U. Offiah, I. C. Amaechi, S. Agbo,
J. P. Tu, Energy Storage Materials, 2018, 12, 137–144.
4 Y. Y. Zheng, J. Xu, Y. Zhang, X. S. Yang, Y. J. Zhang and
Y. Y. Shang, New J. Chem., 2018, 42, 150–160.
5 X. Wu, Z. C. Han, X. Zheng, S. Y. Yao, X. Yang and T. Y. Zhai,
Nano Energy, 2017, 31, 410–418.
S. C. Ezugwu, B. T. Sone, R. U. Osuji, M. Maaza and
F. I. Ezema, Electrochim. Acta, 2015, 171, 128–141.
31 T. V. Thi, A. K. Rai, J. Gim and J. Kim, J. Power Sources, 2015,
292, 23–30.
32 M. J. Jing, C. W. Wang, H. S. Hou, Z. B. Wu, Y. R. Zhu,
Y. C. Yang, X. N. Jia, Y. Zhang and X. B. Ji, J. Power Sources,
2015, 298, 241–248.
6 M. H. Yu, D. Lin, H. B. Feng, Y. X. Zeng, Y. X. Tong and
X. H. Lu, Angew. Chem., Int. Ed., 2017, 56, 5454–5459.
7 Y. A. Kumar, S. S. Rao, D. Punnoose, C. V. Thulasivarma, 33 Y. A. Kumar and H.-J. Kim, Energies, 2018, 11, 3285.
C. V. V. M. Gopi, K. Prabakar and H. J. Kim, R. Soc. Open 34 M. J. Pang, G. H. Long, S. Jiang, Y. Ji, W. Han, B. Wang,
Sci., 2017, 4, 170427.
X. L. Xi, Y. L. Xi, D. X. Wang and F. Z. Xu, Chem. Eng. J.,
2015, 280, 377–384.
35 Y. Zheng, Z. Lin, W. Chen, B. Liang and H. Du, J. Mater.
Chem. A, 2017, 5, 5886–5894.
8 Z. Gao, W. L. Yang, J. Wang, B. Wang, Z. S. Li, Q. Liu,
M. L. Zhang and L. H. Liu, Energy Fuels, 2013, 27, 568–575.
9 F. S. Wu, X. H. Wang, W. R. Zheng, H. W. Gao, C. Hao and
C. W. Ge, Electrochim. Acta, 2017, 245, 685–695.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 1115–1122 | 1121