6
56
A. Abdel Aal, H.B. Hassan / Journal of Alloys and Compounds 477 (2009) 652–656
Table 2
Mehandru et al. [33] have proved that CO dissociates on Pt–Ti alloys
much easier than on pure Pt.
Oxidation peak current densities and potentials for electro-oxidation of methanol
at different electrodes.
−
−2
Electrode
Pure Ni
I/mA cm 2 at +1000 mV (MMO)
Ip/mA cm
Ep/mV (MMO)
4
. Conclusions
247
214
329
395
259
248
341
400
1079
1151
1090
1043
(
(
(
I)
II)
III)
Nanocomposite coatings consisting of nickel matrix and TiO2
nanoparticles can be successfully synthesized by means of elec-
trodeposition onto commercial carbon substrate. The content of
TiO2 particles in the coatings increases with increasing TiO2 con-
centration in the electrolyte. The nanocomposite Ni–TiO2 coatings
showed a smaller grain size and higher catalytic activity towards
the electrochemical oxidation of methanol compared with pure Ni
coating.
References
[
[
1] J.E. Gray, B. Luan, J. Alloys Compd. 336 (2002) 88.
2] L.S. Leon, D. Goberman, R. Ren, M. Gell, S. Jiang, Y. Wang, T.D. Xiao, R.S. Peter,
Surf. Coat. Technol. 130 (2000) 1.
[
[
[
[
[
3] Y. Wang, Z. Xu, Surf. Coat. Technol. 200 (2006) 3896.
4] A. Abdel Aal, K.M. Ibrahim, Z. Abdel Hamid, Wear 260 (2006) 1070.
5] A. Abdel Aal, M. Barakat, R. Mohamed, Appl. Surf. Sci. 254 (2008) 4577.
6] A. Abdel Aal, Mater. Sci. Eng. A 474 (2008) 181.
7] A. Abdel Aal, H.B. Hassan, M.A. Abdel Rahim, J. Electroanal. Chem. 619 (2008)
1
7–25.
Fig. 7. Steady state oxidation current density of methanol oxidation at Ni/C and
Ni–TiO2/C (I, II, and III) electrodes at constant potential of +1000 mV (MMO) and the
time in minutes.
[
8] S.Q. Song, Z.X. Liang, W.J. Zhou, G.Q. Sun, Q. Xin, V. Stergiopoulos, P. Tsiakaras,
J. Power Sources 145 (2005) 495.
9] L. Dubau, F. Hahn, C. Coutanceau, J. Leger, C. Lamy, J. Electroanal. Chem. 554
[
(
2003) 407.
From the above results, a conclusion can be drawn that the
[10] Z. Jusys, J. Kaiser, R.J. Behm, Electrochim. Acta 47 (2002) 3693.
[
11] U.A. Paulus, U. Endruschat, G.J. Feldmeyer, T.J. Schmidt, H. Bonnemann, R.J.
Behm, J. Catal. 195 (2000) 383.
performance of Ni–TiO /C electrodes is superior to Ni/C electrode
2
towards the electro-oxidation of methanol. The enhancement of the
[
[
[
12] W.J. Zhou, B. Zhou, W.Z. Li, Z.H. Zhou, S.Q. Song, G.Q. Sun, Q. Xin, S. Douvartzides,
M. Goula, P. Tsiakaras, J. Power Sources 126 (1/2) (2004) 16.
13] M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, J. Power Sources 134 (2004)
catalytic activity of Ni–TiO /C electrodes probably was attributed
2
to the presence of the mixed oxides (i.e. the nickel oxides and tita-
nium oxides) which may serve as good electron transfer mediators
for the oxidation process [29].
In addition, the presence of TiO2 reduces the particle size of Ni
and increases the actual surface area, which improves the catalytic
activity towards electro-oxidation of small organic molecules by
increasing the number of active sites [30]. Hence, the electrodes of
160.
14] M.A. Abdel Rahim, R.M. Abdel Hameed, M.W. Khalil, J. Power Sources 135 (2004)
42.
[
[
15] B.M. Lotvin, Yu.B. Vasil, Electrokimiya 16 (1980) 1419.
16] N. Guglielmi, J. Electrochem. Soc. 144 (1997) 62.
[
17] A. Abdel Aal, M. Bahgat, M. Radwan, Surf. Coat. Technol. 201 (2006) 2910.
[18] H. Lee, H. Lee, J. Jeon, Surf. Coat. Technol. 201 (2007) 4711.
19] J.P. Celis, J.R. Roos, C. Beulens, J. Electrochem. Soc. 134 (1987) 1402.
20] R. Xu, J. Wang, L. He, Z. Guo, Surf. Coat. Technol. 202 (2008) 1574.
21] J.L. Valdes, H.Y. Cheh, J. Electrochem. Soc. 134 (1987) 223.
[22] J. Fransaer, J.P. Celis, J.R. Roos, J. Electrochem. Soc. 139 (2) (1992) 413.
[
[
[
Ni–TiO /C exhibited higher stability with time in comparison with
2
Ni/C electrode, as shown from the chronoamperometric experi-
ment in Fig. 7. This experiment represents the relation between
the steady state current of methanol oxidation at the peak poten-
tial of about 1000 mV (MMO) and the time in minutes for Ni/C and
Ni–TiO /C electrodes. It is clear that Ni–TiO /C (II and III) electrodes
[
[
[
23] M. Srivastava, V.K. William Grips, K.S. Rajam, Appl. Surf. Sci. 253 (2007) 3814.
24] M. Vukovic, J. Appl. Electrochem. 24 (1994) 878.
25] E. Morallon, J.F. Cases, J.L. Vazquez, A. Aldaz, Electrochim. Acta 37 (1992) 1883.
[26] E. Morallon, A. Rodes, J.L. Vazquez, J.M. Perez, J. Electroanal. Chem. 391 (1995)
149.
2
2
[
27] R. Ortiz, O.P. Marquez, J.C. Gutierrez, J. Phys. Chem. 100 (1996) 8389.
28] M.A. Abdel Rahim, H.B. Hassan, R.M. Abdel Hamid, J. Power Sources 154 (2006)
9.
[29] J.W. Kim, S.M. Park, J. Electrochem. Soc. 146 (1999) 1075.
30] S.M.A. Shibli, V.S. Dilimon, J. Hydrogen Energy 32 (2007) 1694.
31] B. Moreno, E. Chinarro, J.L.G. Fierro, J.R. Jurado, J. Power Sources 169 (2007) 59.
gave the highest stability with time than the Ni/C. Since TiO2 sup-
presses the deactivation of the electrode surface and improves the
stability of these electrodes through complete oxidation of inter-
mediate product of the oxidation process such as CO. Moreno et al.
31,32] found that TiO2 acts as a Pt protecting matrix in the hydro-
gen oxidation reaction which increases CO oxidation. Additionally,
[
5
[
[
[
[32] H. Song, X. Qiu, F. Li, W. Zhu, L. Chen, Electrochem. Commun. 9 (2007) 1298.
[33] S. Mehandru, A. Andreson, P. Ross, J. Catal. 100 (1986) 210.