1578
L. Wang et al. / Inorganic Chemistry Communications 14 (2011) 1574–1578
[6] J. Ge, W. Xing, X. Xue, C. Liu, T. Lu, J. Liao, Controllable synthesis of Pd
nanocatalysts for direct formic acid fuel cell (DFAFC) application: from Pd hollow
nanospheres to Pd nanoparticles, J. Phys. Chem. C 111 (2007) 17305–17310.
[7] V. Mazumder, S. Sun, Oleylamine-mediated synthesis of Pd nanoparticles for
catalytic formic acid oxidation, J. Am. Chem. Soc. 131 (2009) 4588–4589.
[8] Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N.
Hamada, Self-regeneration of a Pd-perovskite catalyst for automotive emissions
control, Nature 418 (2002) 164–167.
[9] Z. Kowalewska, E. Bulska, A. Hulanicki, Organic palladium and palladium–
magnesium chemical modifiers in direct determination of lead in fractions from
distillation of crude oil by electrothermal atomic absorption analysis, Spectrochim.
Acta B 54 (1999) 835–843.
[10] M.T. Reetz, R. Breinbauer, K. Wanninger, Suzuki and Heck reactions catalyzed by
preformed palladium clusters and palladium/nickel bimetallic clusters, Tetrahedron
Lett. 37 (1996) 4499–4502.
[11] M.M. Maňas, R. Pleixats, Formation of carbon\carbon bonds under catalysis by
transition-metal nanoparticles, Acc. Chem. Res. 36 (2003) 638–643.
[12] L.S. Zhong, J.S. Hu, Z.M. Cui, L.J. Wan, W.G. Song, In-situ loading of noble metal
nanoparticles on hydroxyl-group-rich titania precursor and their catalytic
applications, Chem. Mater. 19 (2007) 4557–4562.
Fig. 6. Activity profiles for the Suzuki coupling reaction by palladium nanosphere with
[13] S.U. Son, Y. Jang, J. Park, H.B. Na, H.M. Park, H.J. Yun, J. Lee, T. Hyeon, Designed
synthesis of atom-economical Pd/Ni bimetallic nanoparticle-based catalysts for
Sonogashira coupling reactions, J. Am. Chem. Soc. 126 (2004) 5026–5027.
[14] C. Li, R. Sato, M. Kanehara, H. Zeng, Y. Bando, T. Teranishi, Controllable polyol
synthesis of uniform palladium icosahedra: effect of twinned structure on
deformation of crystalline lattices, Angew. Chem. Int. Ed. 48 (2009) 6883–6887.
[15] Y.H. Chen, H.H. Hung, M.H. Huang, Seed-mediated synthesis of palladium
nanorods and branched nanocrystals and their use as recyclable Suzuki coupling
reaction catalysts, J. Am. Chem. Soc. 131 (2009) 9114–9121.
different reaction cycles.
palladium nanosphere would be promising candidates for applica-
tions in catalytic industry.
Acknowledgments
[16] X. Huang, N. Zheng, One-pot, high-yield synthesis of 5-fold twinned Pd nanowires
and nanorods, J. Am. Chem. Soc. 131 (2009) 4602–4603.
This project was financially supported by the National Basic Research
Program of China (2010CB934700), National Natural Science Foundation
of China (50725208 and 20973019) as well as by Specialized Research
Fund for the Doctoral Program of Higher Education (20091102110035).
[17] S.W. Kim, J. Park, Y. Jang, Y. Chung, S. Hwang, T. Hyeon, Y.W. Kim, Synthesis of
monodisperse palladium nanoparticles, Nano Lett. 3 (2003) 1289–1291.
[18] N. Tian, Z.Y. Zhou, S.G. Sun, Electrochemical preparation of Pd nanorods with high-
index facets, Chem. Commun. (2009) 1502–1504.
[19] C. Xiao, H. Ding, C. Shen, T. Yang, C. Hui, H.J. Gao, Shape-controlled synthesis of
palladium nanorods and their magnetic properties, J. Phys. Chem. C 113 (2009)
13466–13469.
Appendix A. Supplementary data
[20] Z. Yang, K.J. Klabunde, Synthesis of nearly monodisperse palladium (Pd)
nanoparticles by using oleylamine and trioctylphosphine mixed ligands,
J. Organomet. Chem. 694 (2009) 1016–1021.
[21] Z. Yin, D. Ma, X. Bao, Emulsion-assisted synthesis of monodisperse binary metal
nanoparticles, Chem. Commun. 46 (2010) 1344–1346.
Supplementary data to this article can be found online at doi:10.
1016/j.inoche.2011.06.006.
[22] M. Ganesan, R.G. Freemantle, S.O. Obare, Monodisperse thioether-stabilized
palladium nanoparticles: synthesis, characterization, and reactivity, Chem. Mater.
19 (2007) 3464–3471.
[23] W. Niu, Z.Y. Li, L. Shi, X. Liu, H. Li, S. Han, J. Chen, G. Xu, Seed-mediated growth of
nearly monodisperse palladium nanocubes with controllable sizes, Cryst. Growth
Des. 8 (2008) 4440–4444.
[24] L. Zheng, J. Li, Self-assembly of ordered 3D Pd nanospheres at a liquid/liquid
interface, J. Phys. Chem. B 109 (2005) 1108–1112.
[25] A.A. Umar, M. Oyama, Synthesis of palladium nanobricks with atomic-step
defects, Cryst. Growth Des. 8 (2008) 1808–1811.
[26] Z. Yin, H. Zheng, D. Ma, X. Bao, Porous palladium nanoflowers that have enhanced
methanol electro-oxidation activity, J. Phys. Chem. C 113 (2009) 1001–1005.
[27] Z. Chen, Z.M. Cui, F. Niu, L. Jiang, W.G. Song, Pd nanoparticles in silica hollow
spheres with mesoporous walls: a nanoreactor with extremely high activity,
Chem. Commun. 46 (2010) 6524–6526.
[28] S.W. Kim, M. Kim, W.Y. Lee, T. Hyeon, Fabrication of hollow palladium spheres and
their successful application to the recyclable heterogeneous catalyst for Suzuki
coupling reactions, J. Am. Chem. Soc. 124 (2002) 7642–7643.
References
[1] E.C. Walter, F. Favier, R.M. Penner, Palladium mesowire arrays for fast hydrogen
sensors and hydrogen-actuated switches, Anal. Chem. 74 (2002) 1546–1553.
[2] F. Yang, D.K. Taggart, R.M. Penner, Fast, sensitive hydrogen gas detection using
single palladium nanowires that resist fracture, Nano Lett. 9 (2009) 2177–2182.
[3] V. Bérubé, G. Radtke, M. Dresselhaus, G. Chen, Size effects on the hydrogen storage
properties of nanostructured metal hydrides: a review, Int. J. Energy Res. 31
(2007) 637–663.
[4] C. Xu, H. Wang, P.K. Shen, S.P. Jiang, Highly ordered Pd nanowire arrays as
effective electrocatalysts for ethanol oxidation in direct alcohol fuel cells, Adv.
Mater. 19 (2007) 4256–4259.
[5] N. Mackiewicz, G. Surendran, H. Remita, B. Keita, G. Zhang, L. Nadjo, A. Hagège, E.
Doris, C. Mioskowski, Supramolecular self-assembly of amphiphiles on carbon
nanotubes: a versatile strategy for the construction of CNT/metal nanohybrids,
application to electrocatalysis, J. Am. Chem. Soc. 130 (2008) 8110–8111.