23442 J. Phys. Chem. B, Vol. 109, No. 49, 2005
Alexeev et al.
can undergo substantial structural changes induced by the strong
adsorption of the reactants. Exposure of Pt/γ-Al2O3 to a CO/
air mixture at 280 °C, for example, led to partial fragmentation
of the metal particles. As a result, extremely small platinum
clusters incorporating no more than 4-6 metal atoms strongly
interacting with the support were formed. Being exposed to O2
under these reaction conditions, such small Pt clusters can be
positively charged, and therefore, be less active for CO oxidation
than fully reduced Pt. The transformation of metal clusters to
these oxide-like species appeared to be reversible and mainly
responsible for the inflection points observed in the light-off
curves in the 215-235 °C temperature range. In contrast,
exposure of Pt/γ-Al2O3 to the same CO/air mixture at low
reaction temperatures did not result in any substantial changes
in the morphology of the platinum particles, since the Pt-Pt
first-shell coordination number remained almost unchanged.
However, the Pt-Pt bond distance was increased due to the
possible formation of Pt carbonyl species.
(11) Captain, D. K.; Roberts, K. L.; Amiridis, M. D. Catal. Today 1998,
4
2, 93.
(12) Zaikovskii V. I.; Ryndin, Yu. A.; Kovalchuk, V. I.; Plyasova, L.
M.; Kuznetsov, B. N.; Yermakov, Yu. I. Kinet. Katal. 1981, 22, 443.
(13) Jentoft, R. E.; Deutsch, S. E.; Gates, B. C. ReV. Sci. Instrum. 1996,
7, 2111.
6
(
(
14) Alexeev, O.; Panjabi, G.; Gates, B. C. J. Catal. 1998, 173, 196.
15) Vaarkamp, M.; Linders, J. C.; Koningsberger, D. C. Phys. B 1995,
2
08-209, 159.
(16) Koningsberger, D. C. In Synchrotron Techniques in Interfacial
Electrochemistry; Melendres, C. A., Tadjeddine, A., Eds.; Kluwer: Dor-
drecht, The Netherlands, 1994; p 181.
(
17) Stern, E. A. Phys. ReV. B 1993, 48, 9825.
(18) Brigham, E. O. The Fast Fourier Transform; Prentice Hall:
Englewood Cliffs, NJ, 1974.
19) Kirlin, P. S.; van Zon, F. B. M.; Koningsberger, D. C.; Gates, B.
C. J. Phys. Chem. 1990, 94, 8439.
20) van Zon, J. B. A. D.; Koningsberger, D. C.; van’t Blik, H. F. J.;
(
(
Sayers, D. E. J. Chem. Phys. 1985, 82, 5742.
(21) Alexeev, O.; Kim, D.-W.; Graham, G. W.; Shelef, M.; Gates, B.
C. J. Catal. 1999, 185, 170.
(22) Kip, B. J.; Duivenvoorden, F. B. M.; Koningsberger, D. C.; Prins,
R. J. Catal. 1987, 105, 26.
Platinum particles with an average diameter of approximately
6 Å were formed on the TiO2 support. In this case, the strength
(23) Little, L. H. Infrared Spectra of Adsorbed Species; Academic
Press: London, UK, 1975.
2
(24) Baker, R. T.; Bernal, S.; Calvino, J. J.; Perez-Omil, J. A.; Lopez-
of the Pt-support interactions depends mainly on the reduction
temperature and can lead to an increased electron density on
Pt, altering its chemisorptive properties and leading to a
weakening of the Pt-CO bonding. These factors appear to
promote the oxidation of CO. In addition, the higher activity
of TiO2-supported samples can also be attributed to the ability
of TiO2 to provide or stabilize highly reactive oxygen species
presumably located at the metal-support interface. However,
such oxygen species appear to be much more reactive toward
H2 than CO. As a result, the Pt/TiO2 samples examined show
poor selectivities for the CO oxidation under PROX conditions.
Cartes, C. Nanotechnol. Catal. 2004, 2, 403.
(25) Weber, R. S.; Boudart, M.; Gallezot, P. In Growth and Properties
of Metal Clusters; Bourdon J., Ed.; Elsevier: Amsterdam, The Netherlands,
1
980; p 415.
(26) Fukushima, T.; Katzer, J. R.; Sayers, D. E.; Cook. J. In Proceedings
of the 7th International Congress on Catalysis; Seiyama, T., Tanabe, K.,
Eds.; Elsevier: Amsterdam, The Netherlands, 1981; p 79.
(
27) Lee, T. J.; Kim, Y. G. J. Catal. 1984, 90, 279.
(28) Lietz, G.; Lieske, H.; Spindler, H.; Hanke, W.; V o¨ lter, J. J. Catal.
1
983, 81, 17.
29) Lieske, H.; Lietz, G.; Spindler, H.; V o¨ lter, J. J. Catal. 1983, 81, 8.
(30) D’Aniello, M. J.; Monroe, D. R.; Carr, C. J.; Krueger, M. H. J.
Catal. 1988, 109, 407.
31) Baker, R. T. K.; Prestridge, E. B.; Garten, R. L. J. Catal. 1979,
(
(
5
9, 293.
Acknowledgment. This work was supported by the U.S.
Department of Energy, Office of Basic Energy Sciences (DE-
FG02-00ER14980). Use of the National Synchrotron Light
Source, Brookhaven National Laboratory, was supported by the
U.S. Department of Energy, Office of Science, Office of Basic
Energy Sciences, under contract No. DE-AC02-98CH10886.
The authors further acknowledge the staff of beamline X-18B.
The EXAFS data were analyzed with the XDAP software
developed by Vaarkamp et al.15 A portion of this work was
also performed at the W.R. Wiley Environmental Molecular
Sciences Laboratory, a national scientific user facility sponsored
by the U.S. Department of Energy’s Office of Biological and
Environmental Research and located at Pacific Northwest
National Laboratory. Finally, the technical assistance of Dr.
Chongmin Wang and Ms. Sarah Holton in carrying out some
of the experiments is gratefully acknowledged.
(32) Pesty, F.; Steinr u¨ ck, H.-P.; Madey, T. E. Surf. Sci. 1995, 339, 83.
(33) Huizinga, T.; Prins, R. J. Phys. Chem. 1981, 85, 2156.
(
34) Mullins, D. R.; Zhang, K. Z. Surf. Sci. 2002, 513, 163.
(35) Bitter, J. H.; Cauqui, M. A.; Gatica, J. M.; Bernal, S.; Ramaker,
D. E.; Koningsberger, D. C. Stud. Surf. Sci. Catal. 2000, 130, 3183.
(36) Koningsberger, D. C.; Martens, J. H. A.; Prins, R.; Short, D. R.;
Sayers, D. E. J. Phys. Chem. 1986, 90, 3047.
(
37) Martens, J. H. A.; Prins, R.; Koningsberger, D. C. Catal. Lett. 1989,
, 211.
38) Sankar, G.; Vasudevan, S.; Rao, C. N. R. J. Phys. Chem. 1988,
92, 1878.
2
(
(
(
(
(
39) Blyholder, G. J. Phys. Chem. 1964, 68, 2772.
40) Linsebigler, A.; Lu, G.; Yates, J. T. Surf. Sci. 1993, 294, 284.
41) Alexeev, O.; Shelef, M.; Gates, B. C. J. Catal. 1996, 164. 1.
42) Delbecq, F.; Moraweck, B.; V e´ rit e´ , L. Surf. Sci. 1998, 396, 156.
(43) Xu, C.; Koel, B. E. Surf. Sci. 1994, 310, 198.
(
44) Xu, C.; Koel, B. E. Surf. Sci. 1995, 327, 38.
(45) Atli, A.; Abon, M.; Beccat, P.; Bertolini, J. C.; Tardy, B. Surf. Sci.
1
994, 302, 121.
46) Noordermeer, A.; Kok, G. A.; Nieuwenhuys, B. E. Surf. Sci. 1986,
72, 349.
(
1
(
47) Engel, T.; Ertl, G. AdV. Catal. 1979, 28, 2.
References and Notes
(48) Atkins, P. W. Physical Chemistr; Oxford University Press: Oxford,
UK, 1998, Chapter 28.
(1) Rotman, D. Chem. Week 1992, 8, 150.
(
(
(
(
(
49) Bourane, A.; Bianchi, D. J. Catal. 2002, 209, 126.
50) Bourane, A.; Bianchi, D. J. Catal. 2002, 209, 114.
51) Bourane, A.; Bianchi, D. J. Catal. 2001, 202, 34.
52) Bourane, A.; Dulaurent, O.; Bianchi, D. J. Catal. 2000, 196, 115.
53) Henderson, M. A.; Epling, W. S.; Perkins, C. L.; Peden, C. H. F.;
(
2) Tauster, S. J.; Fung, S. C.; Garten, R. L. J. Am. Chem. Soc. 1978,
1
00, 170.
3) Strong Metal Support Interactions; Baker, R. T. K., Tauster, S. J.,
Dumesic, J. A., Eds; American Chemical Society: Washington, D.C., 1986;
(
2
38 pp.
Diebold, U. J. Phys. Chem. B 1999, 103, 5328.
(
(
4) Alekseev, O. S.; Ryndin, Yu. A. Usp. Khim. 1992, 61, 765.
5) Argo, A. M.; Odzak, J. F.; Gates, B. C. Nature (London) 2002,
(
54) Uner, D.; Tapan, N. A.; O¨ zen, I˙ .; U¨ ner, M. Appl. Catal., A 2003,
2
51, 225.
4
2
2
15, 623.
(55) Einaga, H.; Ogata, A.; Futamura, S.; Ibusuki, T. Chem. Phys. Lett.
(6) Alexeev, O. S.; Li, F.; Amiridis, M. D.; Gates, B. C. J. Phys. Chem.
2
001, 338, 303.
005, 109, 2338.
(
56) Lane, G. S.; Wolf, E. E. J. Catal. 1987, 105, 386.
(
7) Vayssilov, G. N.; Gates, B. C.; R o¨ sch, N. Angew. Chem., Int. Ed.
003, 42, 1391.
8) Xu, Z.; Xiao, F.-S.; Purnell, S. K.; Alexeev, O.; Kawi, S.; Deutsch,
S. E.; Gates, B. C. Nature (London) 1994, 372, 346.
9) Santra, A. K.; Goodman, D. W. Electrochim. Acta 2002, 47, 3595.
10) Song, C. Catal. Today 2002, 77, 17.
(57) Chafik, T.; Dulaurent, O.; Gass, J. L.; Bianchi, D. J. Catal. 1998,
1
79, 503.
(
(58) Wartnaby, C. E.; Stuck, A.; Yeo, Y. Y.; King, D. A. J. Chem. Phys.
1
995, 102, 1855.
(59) Bourane, A.; Bianchi, D. J. Catal. 2004, 222, 499.
(60) Alexeev, O.; Gates, B. C. Top. Catal. 2000, 10, 273.
(
(