Notes and references
1
(a) T. V. Choudhary and D. W. Goodman, J. Catal., 2000, 192,
3
9
(a) D. G. Loffler and L. D. Schmidt, J. Catal., 1976, 44, 244;
16; (b) T. V. Choudhary and D. W. Goodman, Catal. Lett., 1999,
3, 59.
2
(
(
b) W. Arabczyk and J. Zamlynny, Catal. Lett., 1999, 60, 167;
c) J. L. Chen, Z. H. Zhu, Q. Ma, L. Li, V. Rudolph and G. Q. Lu,
Catal. Today, 2009, 148, 97; (d) R. O. Idem and N. N. Bakhshi,
Ind. Eng. Chem. Res., 1994, 33, 2047; (e) J. Zhang, M. Comotti,
¨
¨
F. Schtuh, R. Schlogla and D. S. Su, Chem. Commun., 2007, 1916;
(
f) T. V. Choudhary, C. Sivadinaray and D. W. Goodman,
Catal. Lett., 2001, 72, 197; (g) S. S. Pansare, W. Torres and
J. G. Goodwin, Jr., Catal. Commun., 2007, 8, 649;
(
2
h) S. S. Pansare and J. G. Goodwin, Jr., Ind. Eng. Chem. Res.,
008, 47, 4063.
Fig. 4 Temperature dependence of ammonia conversion over the
Dried-SMP-R@SiO and Calcined-SMP-R@SiO catalysts.
3
(a) R. Metkemeijer and P. Achard, Int. J. Hydrogen Energy, 1994,
19, 535; (b) R. Metkemeijer and P. Achard, J. Power Sources, 1994,
2
2
4
9, 271.
structures and particularly in the local reaction environment
around Ru cores.
4 (a) W. Rarog, Z. Kowalczyk, J. Sentek, D. Skladanowski,
D. Szmigiel and J. Zielinski, Appl. Catal., A, 2001, 208, 213;
(
b) M. E. E. Abashar, Y. S. Al-Sughair and I. S. Al-Mutaz, Appl.
According to the XRD result (Fig. 1) and TPR profiles
0
is originally Ru , and
Catal. A, 2001, 236, 35; (c) X. K. Li, W. J. Ji, J. Zhao, S. J. Wang
and C. T. Au, J. Catal., 2005, 236, 181; (d) M. C. J. Bradford,
P. E. Fanning and M. A. Vannice, J. Catal., 1997, 172, 479;
(
ESIw), the core of Dried-SMP@SiO
there is little shrinkage of core volume during H
2
2
reduction
(
e) G. Papapolymerou and V. Bontozoglou, J. Mol. Catal. A:
because there is no removal of lattice oxygen. As a result, little
space is created between the core and the shell. On the other
hand, the core of Calcined-SMPs is the mixture of Ru and
RuO , and the RuO core component can be completely
Chem., 1997, 120, 165; (f) S. F. Yin, Q. H. Zhang, B. Q. Xu,
W. X. Zhu, C. F. Ng and C. T. Au, J. Catal., 2004, 224, 384;
(g) S. F. Yin, B. Q. Xu, W. X. Zhu, C. F. Ng, X. P. Zhou and
C. T. Au, Catal. Today, 2004, 93–95, 27.
J. J. McCarroll, S. R. Tennison and N. P. Wilkinson, US Pat., 4
6
6 (a) M. Danek, K. F. Jensen, C. B. Murray and M. G. Bawendi,
Chem. Mater., 1996, 8, 173; (b) X. Peng, M. C. Schlamp,
A. V. Kadavanich and A. P. Alivisatos, J. Am. Chem. Soc.,
2
2
5
transformed into metallic particles. In view of the (HR)TEM
00 571, 1986.
i
m
a
g
e
s
o
f
t
h
e
D
r
i
e
d
-
S
M
P
@
S
i
O
a
n
d
C
a
l
c
i
n
e
d
-
S
M
P
@
S
i
O
,
2
2
one can find that the shell layers and core particles are closely
contacted. Owing to the removal of lattice oxygen of the RuO
2
1
997, 119, 7019; (c) V. Skumryev, S. Stoyanov, Y. Zhang,
G. Hadjipanayis, D. Givord and J. Nogues, Nature, 2003, 423,
50; (d) Y. H. Deng, D. W. Qi, C. H. Deng, X. M. Zhang and
core, there is core shrinkage and hence the space between the
core and shell, resulting in ‘‘microcapsular-like’’ structures
8
(
Fig. 2, B-R).
D. Y. Zhao, J. Am. Chem. Soc., 2008, 130, 28; (e) J. C. Park,
H. J. Lee, J. U. Bang, K. H. Park and H. Song, Chem. Commun.,
The unique environment around the Ru cores can function
2
009, 7345; (f) Z. F. Bian, J. Zhu, F. L. Cao, Y. F. Lu and H. X. Li,
11
as a microcapsular-like reactor in which the reactant molecules
are enriched (confinement effect). A similar phenomenon has
been reported recently over the carbon nanotube encapsulated
Chem. Commun., 2009, 43, 6551; (g) D. C. Niu, Y. S. Li,
X. L. Qiao, L. Li, W. R. Zhao, H. R. Chen, Q. L. Zhao, Z. Ma
and J. L. Shi, Chem. Commun., 2008, 4463; (h) B. Y. Ahn,
S. I. Soak, I. C. Baek and S.-I Hong, Chem. Commun., 2006,
1
2
Fe nanoparticles. The consequence is enhanced adsorption
and catalytic reaction on the core surfaces (Scheme 1). In other
words, despite there being a decline in exposure of surface
metal atoms (per unit mass of catalyst), the core–shell catalysts
are catalytically more active than the naked metal NPs or
conventional supported ones.
1
4
89; (i) L. Li, H. F. Qian and J. C. Ren, Chem. Commun., 2005,
083.
7 (a) K. P. Velikov, A. Moroz and A. van Blaaderen, Appl. Phys.
Lett., 2002, 80, 49; (b) J. Luo, M. M. Maye, Y. B. Lou, L. Han,
M. Hepel and C. J. Zhong, Catal. Today, 2002, 77, 127.
(a) P. Reiss, J. Bleuse and A. Pron, Nano Lett., 2002, 2, 781;
(b) F. Teng, Z. J. Tian, G. X. Xiong and Z. S. Xu, Catal. Today,
2004, 93–95, 651; (c) Y. X. Li, S. Q. liu, L. H. Yao, W. J. Ji and
C.-T. Au, Catal. Commun., 2010, 11, 368; (d) Y. X. Li, L. H. Yao,
S. Q. Liu, J. Zhao, W. J. Ji and C.-T. Au, Catal. Today, 2010, DOI:
8
We acknowledge the financial support of the RGC,
HKSAR (RGC 200107).
1
0.1016/j.cattod.2010.02.066.
9
(a) F. Bonet, K. Tekaia-Elhsissen and K. V. Sarathy, Bull. Mater.
Sci., 2000, 23, 165; (b) P. Y. Silvert, R. Herrera-Urbina and
K. Tekaia-Elhsissen, J. Mater. Chem., 1997, 7, 293;
(
c) Y. S. Sun, Y. D. Yin, B. T. Mayers, T. Herricks and
Y. N. Xia, Chem. Mater., 2002, 14, 4736; (d) P. Y. Silvert and
K. Tekaia-Elhsissen, Solid State Ionics, 1995, 82, 53; (e) F. Kim,
S. Connor, H. Song, T. Kuykendall and P. Yang, Angew. Chem.,
Int. Ed., 2004, 43, 3673.
1
0 W. Sto
2.
1 (a) J. Shi, N. Ren, Y. H. Zhang and Y. Tang, Prog. Chem., 2009,
1, 1750; (b) W. M. Zhang, J. S. Hu, Y. G. Guo, S. F. Zheng,
L. S. Zhong, W. G. Song and L. J. Wan, Adv. Mater., 2008, 20,
160; (c) S. H. Joo, P. J. Young, C. K. Tsung, Y. Yamada,
P. D. Yang and G. A. Somorjai, Nat. Mater., 2009, 8, 126.
12 X. L. Pan and X. H. Bao, Chem. Commun., 2008, 6271.
¨
ber, A. Fink and E. Bohn, J. Colloid Interface Sci., 1968, 26,
6
1
2
Scheme 1 Illustration of enhanced adsorption and reaction in
1
a
microcapsular-like reactor: (A-R) Dried-SMP-R@SiO
2
; (B-R)
Calcined-SMP-R@SiO
2
.
5
300 | Chem. Commun., 2010, 46, 5298–5300
This journal is ꢀc The Royal Society of Chemistry 2010