1
96
N.L. Arthur, L.A. MilesrChemical Physics Letters 282 (1998) 192–196
A plot of krn versus n comparing our results with
those of Potzinger and coworkers and W o¨ rsdorfer et
al. is shown in Fig. 2. Our values show that methyl
substitution leads to a progressive increase in Si–H
bond reactivity. The same trend is followed by the
values of Potzinger and coworkers, but as a result of
their low rate constants for ŽCH . SiH and SiH4,
their values are rather scattered. The data of
W o¨ rsdorfer et al. show little variation for the three
silanes studied.
an oddly low value for ŽCH . SiH, Potzinger and
3 3
coworkers came to the conclusion that the activation
energy was unaffected by methylation, and that the
main contribution to the change in krn along the
series was a parallel change in A-factor.
The conflicting behaviour shown by the different
attacking species points to the need for further stud-
ies of the temperature dependence of these reactions,
particularly those involving H and O atom attack.
3
2
2
A comparison of the reactivity of ŽCH . SiH and
SiH4 towards attack by various atoms is shown in
3
3
References
Table 3. The ratios of the krn values for ŽCH . SiH
3
3
w1x L. Ding, P. Marshall, J. Am. Chem. Soc. 114 Ž1992. 5754.
and SiH are 3.2, 2.8, 4.6 and 35, for H, Cl, Br and
4
2
w x
L. Ding, P. Marshall, J. Phys. Chem. 96 1992 2197.
Ž .
O attack, respectively. Thus the introduction of
methyl groups enhances the reactivity of the Si–H
bond to a similar extent for the H, Cl and Br
reactions, but for O atom attack the effect is much
more striking. For both the Cl and Br atom reactions,
the Arrhenius parameters of Ding and Marshall w1,2x
w3x O. Horie, R. Taege, B. Reimann, N.L. Arthur, P. Potzinger,
J. Phys. Chem. 95 Ž1991. 4393.
w4x R. Walsh, in: S. Patai, Z. Rappoport ŽEds.., The Chemistry
of Silicon Compounds, Wiley, New York, 1989, chap. 5.
w5x A. Goumri, W.-J. Yuan, L. Ding, Y. Shi, P. Marshall, Chem.
Phys. 177 Ž1993. 233.
w6x N.L. Arthur, P. Potzinger, B. Reimann, H.-P. Steenbergen, J.
Chem. Soc. Faraday Trans. II 85 Ž1989. 1447.
w7x W.J. Bullock, R. Walsh, K.D. King, J. Phys. Chem. 98
Ž1994. 2595.
show that the observed reactivity increase from SiH4
to ŽCH . SiH is the result of an increase in the value
3
3
of Arn, offset to some extent by an increase in
activation energy. In the case of the O atom reac-
tions, however, the unpublished results of Ding and
Marshall w1x indicate that the activation energy for
ŽCH . SiH is substantially less than for SiH , and
w8x N.L. Arthur, I.A. Cooper, J. Chem. Soc. Faraday Trans. II 91
Ž1995. 3367.
w9x N.L. Arthur, I.A. Cooper, J. Chem. Soc. Faraday Trans. 93
Ž1997. 521.
w10x R. Ellul, P. Potzinger, B. Reimann, J. Phys. Chem. 88 Ž1984.
3
3
4
2
793.
this leads to the much greater increase in krn ob-
served for these reactions. For H atom attack, despite
w11x G.K. Moortgat, Diss. Abstr. B 31 Ž1970. 1879.
w12x J.-H. Hong, Ph.D. Thesis, University of Detroit, 1972.
w13x J.A. Cowfer, K.P. Lynch, J.V. Michael, J. Phys. Chem. 79
Ž1975. 1139.
Table 3
w14x K.Y. Choo, P.P. Gaspar, A.P. Wolf, J. Phys. Chem. 79
Reactivity of ŽCH . SiH and SiH to atom attack
3
3
4
Ž1975. 1752.
krn Ž10y13 cm sy1.
3
Silane
Ref.
w15x D. Mihelcic, V. Schubert, R.N. Schindler, P. Potzinger, J.
Phys. Chem. 81 Ž1977. 1543.
H
y13
w
16x
17x
Ž
.
ŽCH . SiH
SiH4
2.7=10
0.85=10
Cl
1.56=10
0.554=10
this work
this work
E.R. Austin, F.W. Lampe, J. Phys. Chem. 81 1977 1134.
K. W o¨ rsdorfer, B. Reimann, P. Potzinger, Z. Naturforsch. A
3
3
y13
w
3
8 Ž1983. 896.
y10a
w18 M. Koshi, F. Tamura, H. Matsui, Chem. Phys. Lett. 173
x
ŽCH . SiH
SiH4
w1x
w2x
3
3
y10a
Ž
.
1990 235.
w19x N.M. Johnson, J. Walker, K.S. Stevens, J. Appl. Phys. 69
Br
y12a
1991 2631.
Ž .
ŽCH . SiH
5.23=10
1.14=10
O
3.06=10
0.88=10
w1x
w2x
3
3
y12a
w
x
Ž
.
SiH4
20 S.K. Loh, J.M. Jasinski, J. Chem. Phys. 95 1991 4914.
w21x K. Sugawara, K. Okazaki, S. Sato, Bull. Chem. Soc. Jpn. 77
y12b
y13b
1955 334.
Ž .
ŽCH . SiH
w3x
w3x
3
3
w
22 P.D. Lightfoot, M.J. Pilling, J. Phys. Chem. 91 1987 3373.
x Ž .
SiH4
w23x N.L. Arthur, T.N. Bell, Rev. Chem. Intermed. 2 Ž1978. 37.
w24x N.L. Arthur, P. Potzinger, B. Reimann, H.-P. Steenbergen, J.
Chem. Soc. Faraday Trans. 86 Ž1990. 1407.
a
Evaluated at 298 K from Arrhenius parameters.
Room temperature.
b