have deduced the average nuclei geometry to be a spherical
segment or cap with Kϭ0.35. Figure 3͑e͒, corresponds to the
point E͑82 s͒ in Fig. 1͑a͒ which was about 4 s after nuclei
coalescence as was calculated from the optical model shown
in Fig. 1͑a͒. The mean nuclei area of 5.9ϫ103 nm2 ͑rϭ43
nm͒ is very close to the ellipsometry result of 45 nm. The
good comparison of nuclei density and average nuclei height
as a function of time from AFM and ellipsometry optical
modeling are shown in Figs. 2͑a͒ and 2͑b͒.
In conclusion, we have shown that in situ real time el-
lipsometry can be used to characterize the nucleation of Si
on SiO2 in a RTCVD system using Si2H6 ͑5% in He͒. With
the use of AFM we have been able to measure several nucle-
ation parameters which are then used in the Bruggeman ef-
fective medium approximation for optical data analysis. The
main nucleation parameters such as: prenucleation incuba-
tion time, saturation nuclei density, mean nuclei size, and
nuclei layer growth rate are obtained. The best-fit model for
the poly-Si nucleation on SiO2 at 700 °C and 0.2 Torr is a
cap-shaped optical model with ratio of Kϭ0.35 and nuclei
distance of about 90 nm. From this model a incubation time
of 26 s, nuclei layer growth rate of 20 nm/min, coalescence
nuclei size of 45 nm, and nuclei coalescence were obtained.
¨
FIG. 2. ͑a͒ Initial nuclei layer thickness as a function of time from real time
ellipsometry and comparisons with AFM. ͑b͒ Comparison of nuclei density
from real time ellipsometry and AFM.
¨
The authors would like to thank Dr. M. C. Ozturk and K.
E. Violette for helpful discussions and suggestions. This
work was supported in part by the National Science Founda-
tion ͑NSF͒, Engineering Research Center in North Carolina
State University, and Northern Telecom Electronics ͑NTE͒
Ltd.
from the ellipsometry measurement, gives Nnϭ5.2ϫ109
nuclei/cm2, hnϭ2.3 nm and Anϭ7.2ϫ102 nm2. The smallest
nucleus observed in Fig. 3͑b͒ is about 2 nm in height and 15
nm base diameter. This size is much larger than that
expected22 for a critical nuclei in CVD which often consists
of only a few atoms. This may imply that there is rapid
lateral growth of nuclei from the critical nuclei size by lateral
attachment to the nuclei from surface diffusion. Figures 3͑c͒
and 3͑d͒ are the AFM images corresponding to the points of
C͑50 s͒ and D͑53 s͒ in Fig. 1͑b͒ which yield nuclei densities
of 9.2 and 13.0ϫ109 nuclei/cm2, respectively. The average
heights are about 10 and 12 nm and mean nuclei areas are
2.7ϫ103 nm2 and 2.9ϫ103 nm2 ͑rϭ30 nm͒, from which we
1 K. Baert, P. Deschepper, J. Poortmans, J. Nijs, and R. Mertens, Appl.
Phys. Lett. 60, 442 ͑1992͒.
2 M. L. Cheng, A. Kohlase, T. Sato, S. Kobayashi, J. Murota, and N. Mi-
koshiba, Jpn. J. Appl. Phys. 28, L2054 ͑1989͒.
3 J. A. Friedrich, M. Kastelic, G. W. Neudeck, and C. G. Takoudis, J. Appl.
Phys. 65, 1713 ͑1989͒.
4 K. Aketagawa, T. Tatsumi, and J. Sakai, J. Cryst. Growth 111, 860 ͑1991͒.
5 C. H. Hong, C. Y. Park, and H. J. Kim, J. Appl. Phys. 71, 5427 ͑1992͒.
6 F. Hottier and R. Cadoret, J. Cryst. Growth 56, 304 ͑1982͒.
7 R. W. Collins and J. M. Cavese, J. Non-Cryst. Solids 97&98, 269 ͑1987͒.
8 R. W. Collins and B. Y. Yang, J. Vac. Sci. Technol. B 7, 1155 ͑1989͒.
9 R. W. Collins, Y. Cong, H. V. Nguyen, L. An, K. Vedam, T. Badzian, and
R. Messier, J. Appl. Phys. 71, 5287 ͑1992͒.
10 M. Li, Y. Z. Hu, J. Wall, K. Conrad, and E. A. Irene, J. Vac. Sci. Technol.
A 11, 1886 ͑1993͒.
11 M. Li, Y. Z. Hu, J. F. Wall, D. Diehl, and E. A. Irene, presented at 40th
National Symposium of AVS, Orlando, FL, Nov. 15–19, 1993.
12 M. Li, Y. Z. Hu, E. A. Irene, L. Liu, K. N. Christensen, and D. M. Maher,
J. Vac. Sci. Technol. B 13 ͑in press͒.
13 B. Drevillon, C. Godet, and S. Kumar, Appl. Phys. Lett. 50, 1651 ͑1987͒.
14
¨
¨
K. E. Violette, M. K. Sanganeria, M. C. Ozturk, G. Harris, and D. M.
Maher, J. Electrochem. Soc. 141, 3269 ͑1994͒.
15 K. A. Conrad, R. K. Sampson, H. Z. Massoud, and E. A. Irene, J. Vac. Sci.
Technol. B 11, 2096 ͑1993͒.
16 D. E. Aspnes and A. A. Studna, Appl. Opt. 14, 220 ͑1975͒.
17 D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 ͑1983͒.
18 D. E. Aspnes, J. B. Theeten, and F. Hottier, Phys. Rev. B 20, 3292 ͑1979͒.
19 D. E. Aspnes, Thin Solid Films 89, 249 ͑1982͒.
FIG. 3. AFM image of initial nucleation stage of rapid thermal CVD Si
nuclei on SiO2 surface ͑a͒, ͑b͒, ͑c͒, ͑d͒, and ͑e͒ corresponding to A, B, C, D
in Fig. 1͑b͒ and E in Fig. 1͑a͒. ͑a͒ tϭ25 s, none; ͑b͒ tϭ31 s, Nnϭ5.2ϫ109
nuclei/cm2, hnϭ2.3 nm, Anϭ7.2ϫ102 nm2; ͑c͒ tϭ50 s, Nnϭ9.2ϫ109
nuclei/cm2, hnϭ10 nm, Anϭ2.7ϫ103 nm2; ͑d͒ tϭ53 s, Nnϭ1.3ϫ1010
nuclei/cm2, hnϭ12 nm, Anϭ2.9ϫ103 nm2; ͑e͒ tϭ82 s, Nnϭ1.0ϫ1010
nuclei/cm2, hnϭ14 nm, Anϭ5.9ϫ103 nm2.
20 A. M. Antoine B. Drevillon, and P. R. Cabarrocas, J. Appl. Phys. 61, 2501
͑1987͒.
21 W. A. P. Claassen and J. Bloem, J. Electrochem. Soc. 127, 194 ͑1980͒.
22 J. Bloem, J. Cryst. Growth 50, 581 ͑1980͒.
702
Appl. Phys. Lett., Vol. 66, No. 6, 6 February 1995
Hu et al.
137.189.170.231 On: Tue, 23 Dec 2014 20:03:19