NCs useful for biological applications, phase transfer experiments
were conducted, and the NCs were finally rendered water-soluble.
The phase transfer experiments and results are shown in Fig.
S6, ESI†. The obtained water-solubility NCs were modified
by biocompatible carboxylic acid groups which were ideal for
conjugating with biomolecules, such as antibodies, proteins,
peptides, and nucleic acids. With such high water-solubility and
biocompatibility, the as-prepared NCs potentially can serve as a
new nanoplatform technology for the next generation multimodal
biomedical applications including bioseparation, sensing, and
imaging.
References
1
2
L. Brus, J. Phys. Chem., 1986, 90, 2555–2560.
C. B. Murray, C. R. Kagan and M. G. Bawendi, Annu. Rev. Mater. Sci.,
2000, 30, 545–610.
3 A. P. Alivisatos, Science, 1996, 271, 933–937.
4
5
Y. Chabre and J. Pannetier, Prog. Solid State Chem., 1995, 23, 1–130.
M. S. Whittingham and P. Y. Zavalig, Solid State Ionics, 2000, 131,
1
09–115.
6 Y. F. Shen, P. R. Zerger, N. R. DeGuzman, L. S. Suib, L. I. McCurdy,
D. Potter and C. L. O’Young, Science, 1993, 260, 511–515.
7
8
M. Yin and S. O’Brien, J. Am. Chem. Soc., 2003, 125, 10180–10181.
O. Giraldo, S. L. Brock, W. S. Willis, M. Marquez and S. L. Suib, J.
Am. Chem. Soc., 2000, 122, 9330–9331.
9
A. R. Armstrong and P. G. Bruce, Nature, 1996, 381, 499–500.
1
1
0 A. H. De Vries, L. Hozoi and R. Broer, Phys. Rev. B: Condens. Matter
Conclusions
Mater. Phys., 2002, 66, 35108.
1 Y. M. Huh, Y. W. Jun, H. T. Song, S. Kim, J. S. Choi, J. H. Lee, S. Yoon,
K. S. Kim, J. S. Shin, J. S. Suh and J. Cheon, J. Am. Chem. Soc., 2005,
127, 12387–12391.
In summary, monodisperse size-tuneable Fe
tional Fe /Ag heterodimer NCs have been synthesized with a
facile solution route. In the synthesis of Fe NCs, dodecanol
3
O
4
, Ag, and bifunc-
3
O
4
1
1
1
2 M. Haruta, CATTECH, 2002, 6, 102–115.
3
O
4
3 C. J. Zhong and M. M. Maye, Adv. Mater., 2001, 13, 1507–1511.
4 S. D. Evans, S. R. Johnson, Y. L. L. Cheng and T. H. Shen, J. Mater.
Chem., 2000, 10, 183–188.
was chosen as the substitute of 1,2-hexadecanediol and “size-
control” was achieved by simply adjusting the proportion among
the multi-ligands without any seed-mediated growth method. In
the synthesis of Ag NCs, organometallic silver acetylacetonate
1
5 M. Zayats, A. B. Kharitonov, S. P. Pogorelova, O. Lioubashevski, E.
Katz and I. Willner, J. Am. Chem. Soc., 2003, 125, 16006–16014.
6 W. Baschong and N. G. Wrigley, J. Electron Microsc. Tech., 1990, 14,
1
(
Agacac) was chosen as precursor and tunable sizes were easily
obtained by adjusting the reaction temperatures. Under the
conductions of the syntheses of Fe and Ag NCs, Fe /Ag
bifunctional heterodimer NCs with particles sizes tuned from
to 16 nm for Fe and 4 to 8 nm for Ag were successfully
synthesized. The current synthetic procedure is very simple, low-
cost, and highly reproducible. As-prepared hydrophobic Fe , Ag
and bifunctional Fe /Ag heterodimer NCs were successfully
3
13–323.
17 W. Jahn, J. Struct. Biol., 1999, 127, 106–112.
1
8 (a) W. Shi, H. Zeng, Y. Sahoo, T. Y. Ohulchanskyy, Y. Ding, Z. L. Wang,
M. Swihart and P. N. Prasad, Nano Lett., 2006, 6, 875–881; (b) H. Ding,
C. M. Shen, C. Chao, Z. C. Xu, C. Li, Y. Tian, X. Z. Shi and H. J. Gao,
Chin. Phys. B, 2010, 19, 066102.
3
O
4
3
O
4
5
3
O
4
19 (a) H. Yu, M. Chen, P. M. Rice, S. X. Wang, R. L. White and S. Sun,
Nano Lett., 2005, 5, 379–382; (b) G. Lopes, J. M. Vargas, S. K. Sharma,
F. Beron, K. R. Pirota, M. Knobel, C. Rettori and R. D. Zysler, J. Phys.
Chem. C, 2010, 114, 10148–10152.
3
O
4
3
O
4
transferred into water and modified by carboxylic acid groups
which are ideal for conjugating with biomolecules. With such
high water-solubility and biocompatibility, the as-prepared NCs
provide the potential to serve in many multifunctional biomed-
ical applications, such as multimodal imaging and detection
probes.
20 J. Jiang, H. Gu, H. Shao, E. Devlin, G. C. Papaefthymiou and J. Y.
Ying, Adv. Mater., 2008, 20, 4403–4407.
1 S. H. Choi, H. B. Na, Y. Il Park, K. An, S. G. Kwon, Y. Jang, M. Park,
J. Moon, J. S. Son, I. C. Song, W. K. Moon and T. Hyeon, J. Am. Chem.
Soc., 2008, 130, 15573–15580.
22 J. Choi, Y. Jun, S. Yeon, H. C. Kim, J. S. Shin and J. Cheon, J. Am.
Chem. Soc., 2006, 128, 15982–15983.
2
2
3 L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D.
Stein and B. Dragnea, Chem. Mater., 2007, 19, 3624–3632.
4 S Sun and H. Zeng, J. Am. Chem. Soc., 2002, 124, 8204–8205.
5 H Si, H. Wang, H. Shen, C. Zhou, S. Li, S. Lou, W. Xu, Z. Du and L.
S. Li, CrystEngComm, 2009, 11, 1128–1132.
2
2
Acknowledgements
This work was supported by the research project of the National
Natural Science Foundation of China (20771035), Program for
New Century Excellent Talents in University of Chinese Ministry
of Education, Hi-Tech Research and Development Program
of China (863 plan, 2006AA03Z3592), and Innovation Scien-
tists and Technicians Troop Construction Projects of Henan
Province.
2
6 D. Wang, T Xie, Q Peng and Y Li, J. Am. Chem. Soc., 2008, 130,
4
016–4022.
27 S Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang and
G. Li, J. Am. Chem. Soc., 2004, 126, 273–279.
8 C. Zhou, H. Shen, Y. Guo, L. Xu, J. Niu, Z. Zhang, Z. Du, J. Chen and
L. S. Li, J. Colloid Interface Sci., 2010, 344, 279–285.
9 X Jia, D Chen, X. Jiao and S. Zhai, Chem. Commun., 2009, 968–970.
30 X. Z. Lin, X. Teng and H. Yang, Langmuir, 2003, 19, 10081–10085.
2
2
This journal is © The Royal Society of Chemistry 2010
Dalton Trans., 2010, 39, 10984–10989 | 10989