Interaction of Co-Tin Particles with Ethylene
J. Phys. Chem. B, Vol. 102, No. 33, 1998 6329
References and Notes
tin compared to that exhibited by other elements. It is well
established from surface science studies that additives such as
sulfur and phosphorus achieve optimum coverages of about half
a monolayer;62,63 on the other hand, much higher coverages are
attained with tin. On the basis of these findings, it is therefore
tempting to correlate the observed deactivation of cobalt-tin
particles with the propensity of the latter element to selectively
diffuse to the metal/gas interface. A consequence of this action
would be that catalysts containing a relatively high concentration
of tin would be expected to undergo deactivation at a faster
rate than those where the metal was a minor constituent. This
pattern of behavior was indeed observed experimentally.
(1) Hofer, L. J. E. In Catalysis; Emmett, P. H., Ed.; Reinhold Publishing
Co.: New York, 1956; Vol. 4, p 373.
(2) Palmer, H. B.; Cullis, C. F. In Chemistry and Physics of Carbon;
Walker, Jr., P. L., Ed.; Marcel Dekker: New York, 1965; Vol. 1, p 265.
(3) Baker, R. T. K.; Harris, P. S. In Chemistry and Physics of Carbon;
Walker, Jr., P. L., Thrower, P. A., Eds.; Marcel Dekker: New York, 1978;
Vol. 14, p 83.
(4) Trimm, D. L. Catal. ReV.sSci. Eng. 1977, 24, 67.
(5) Rodriguez, N. M. J. Mater. Res. 1993, 8, 3233.
(6) Ruston, W. R.; Warzee, M. J.; Hennaut, J.; Waty, J. Carbon 1969,
7, 47.
(7) Baker, R. T. K.; Barber, M. A.; Harris, P. S.; Feates F. S.; Waite,
R. J. J. Catal. 1972, 26, 51.
(8) Boehm, H. P. Carbon 1973, 11, 583.
(9) Bernardo, C. A.; Lobo, L. S. J. Catal. 1975, 37, 267.
(10) Oberlin, A.; Endo, M.; Koyama, T. J. Cryst. Growth 1976, 32,
335.
(11) Rostrup-Nielsen J. R.; Trimm, D. L. J. Catal. 1977, 48, 155.
(12) Sacco, A. Jr.; Thacker, P.; Chang, T. N.; Chiang, A. T. S. J. Catal.
1984, 85, 224.
(13) Yang R. T.; Yang, K. L. J. Catal. 1985, 93, 182.
(14) Kock, A. J. H. M.; de Bokx, P. K.; Boellard, E.; Klop, W.; Geus,
J. W. J. Catal. 1985, 96, 468.
(15) Tibbetts, G. G.; Devour, M. G.; Rodda, E. J. Carbon 1987, 25,
367.
(16) Alstrup, I. J. Catal. 1988, 109, 241.
(17) Chitrapu, P.; Lund, C. R. F.; Tsamopoulos, J. A. Carbon 1992,
30, 285.
(18) McAllister, P.; Wolf, E. E. J. Catal. 1992, 138, 129.
(19) Audier, M.; Oberlin, A.; Oberlin, M.; Coulon, M.; Bonnetain, L.
Carbon 1981, 19, 217.
(20) Yang, R. T.; Chen, J. P. J. Catal. 1989, 115, 52.
(21) Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. J. Catal. 1992,
134, 253.
4. Effect of Tin on the Structural Characteristics of
Carbon Filaments Produced from the Cobalt-Catalyzed
Decomposition of Ethylene. A comparison of the appearance
of carbon filaments derived from the interaction of cobalt and
cobalt-tin with ethylene/hydrogen mixtures revealed that the
presence of a small quantity of the additive produced substantial
modifications in the crystalline perfection of the deposited
material. High-resolution transmission electron microscopy
examination showed that the structure of filaments generated
from pure cobalt tended to be of relatively short-range order
and exhibited oxidation characteristics that were close to that
of amorphous carbon.63 In contrast, those generated under the
same experimental conditions with cobalt containing only 0.5%
tin were highly crystalline in nature and adopted a structure
where the graphitic platelets were oriented in a “herringbone”
arrangement.
Previous studies22 have established that the atomic arrange-
ment that exists at the carbon-depositing faces of the metal
catalyst particle is the key factor in determining the degree of
crystalline perfection of the filamentous structure. If the spacing
of the metal atoms at this interface is in accordance with that
of the carbon atoms in graphite, then one would expect the
filamentous structures that are produced to be highly crystalline
in nature. On the basis of this criterion, one may conclude that
in the present bimetallic system the presence of a small amount
of tin is sufficient to bring about a modification in the structural
arrangement of cobalt atoms to a condition that favors precipita-
tion of carbon in the form of graphite.
(22) Rodriguez, N. M.; Chambers, A.; Baker, R. T. K. Langmuir 1995,
11, 3862.
(23) Rodriguez, N. M.; Kim, M. S.; Downs, W. B.; Baker, R. T. K. In
Carbon Fibers, Filaments and Composites; Figueiredo, J. L., Bernardo, C.
A., Baker, R. T. K., Huttinger, K. J., Eds.; NATO ASI Series; Kluwer
Academic Publishers: Dordrecht, The Netherlands, 1987; Vol. 177, p 541.
(24) Downs, W. B.; Baker, R. T. K. Carbon 1991, 29, 1173.
(25) Downs, W. B.; Baker, R. T. K. J. Mater. Res. 1995, 10, 625.
(26) Fenelonov, V. B.; Avdeeva, L. B.; Zheivot, V. I.; Okkel, L. G.;
Goncharova, G.; Pimneva. L. G. Kinet. Catal. 1993, 34, 483.
(27) Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. J. Phys. Chem.
1994, 98, 13108.
(28) Shaikhutdinov, S. K. Kinet. Catal. 1995, 36, 549.
(29) Hoogenraad, M. S.; van Leeuwarden, R. A. G. M. M.; van Breda,
G. J. B.; Vriesman, B.; Broersma, A.; van Dillen, A. J.; Geus, J. W. Stud.
Surf. Sci. Catal. 1995, 263.
(30) Likholobov, V. A.; Fenelonov, V. B.; Okkel, L. G.; Goncharova,
O. V.; Avdeeva, L. B.; Zaikovskii, V. I.; Kuvshinov, G. G.; Semikolenov,
V. A.; Duplyakin, V. K.; Baklanova, O. N.; Plaksin, G. V. React. Kinet.
Catal. Lett. 1995, 54, 381.
(31) Chambers, A.; Nemes, T.; Rodriguez, N. M.; Baker, R. T. K. J.
Phys. Chem. B 1998, 102, 2251.
(32) Walker, P. L., Jr.; Raksawski, J. F.; Imperial, G. R. J. Phys. Chem.
1959, 63, 140.
(33) Nishiyama, Y.; Tamai, Y. J. Catal. 1976, 45, 1.
(34) Yang, K. L.; Yang, R. T. Carbon 1986, 24, 687.
(35) Kim, M. S.; Rodriguez, N. M.; Baker, R. T. K. J. Catal. 1991,
131, 60.
(36) Rodriguez, N. M.; Kim, M. S.; Baker, R. T. K. J. Catal. 1993,
144, 93.
(37) Sinfelt, J. H. Bimetallic Catalysts; Exxon Monograph; John Wiley
and Sons: New York, 1983.
Summary. It has been found that the introduction of a mere
0.5 wt % of tin into cobalt produces a dramatic effect on the
catalytic activity of the ferromagnetic metal toward the formation
of filamentous carbon when the bimetallic powder is treated in
ethylene at 600 °C. It is believed that the enhancement in solid
carbon formation is due to electronic perturbations in the surface
of the host metal resulting from the presence of a critical number
of tin atoms. It should be stressed that definitive evidence to
support this postulate has not been obtained. A further increase
in the concentration level of tin in the system did not exert any
major impact on the amount of carbon generated from the
hydrocarbon decomposition reaction; however, it was observed
that under these circumstances there was a significant increase
in the rate of catalyst deactivation. Finally, characterization
studies of the solid carbon product revealed that in the presence
of tin the catalytically grown filamentous structures acquired a
high degree of crystalline order.
(38) Krishnankutty, N.; Rodriguez, N. M.; Baker, R. T. K. J. Catal.
1996, 158, 217.
(39) Dautzenberg, F. M.; Helle, J. N.; Bileon, P.; Sachtler, W. M. H. J.
Catal. 1980, 63, 119.
(40) Burch, R.; Garla, L. C. J. Catal. 1981, 71, 360.
(41) Lieske, H.; Volter, J. J. Catal. 1984, 90, 96.
(42) Liu, T.-C.; Chiu, S.-J. Ind. Eng. Chem. Res. 1994, 33, 488.
(43) Masai, M.; Honda, K.; Kubota, A.; Ohnaka, S.; Nishikawa, Y.;
Nakahara, K.; Kishi, K.; Ikeda, S. J. Catal. 1977, 50, 419.
(44) Masai, M.; Honda, K.; Ohnaka, S.; Ando, T.; Maeda, Y.; Kishi,
K.; Ikeda, S. Nippon Kagaku Kaishi 1979, 1153.
(45) Baker, R. T. K.; Terry, S.; Harris, P. S. Nature 1975, 253, 37.
(46) Best, R. J.; Russell, W. W. J. Am. Chem. Soc. 1954, 76, 838.
(47) Sinfelt, J. H.; Carter, J. L.; Yates, D. J. C. J. Catal. 1972, 24, 283.
(48) Baker, R. T. K.; Chludzinski, J. J. J. Catal. 1980, 64, 464.
Acknowledgment. The authors would like to thank Dr. Nelly
Rodriguez for her help with the high-resolution electron
microscopy studies. Financial support for this project was
provided by the United States Department of Energy, Basic
Energy Sciences, Grant DE-FG02-97ER14741.